Responsible AI in the Enterprise: Practical AI risk management for explainable, auditable, and safe models with hyperscalers and Azure OpenAI

Adnan Masood; Heather Dawe

ISBN 10: 1803230525 ISBN 13: 9781803230528
Verlag: Packt Publishing, 2023
Neu Softcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015

Dieses Buch ist nicht mehr verfügbar. AbeBooks führt Millionen von Büchern. Bitte geben Sie unten Suchbegriffe ein, um ähnliche Exemplare zu finden.

Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9781803230528_new

Diesen Artikel melden

Inhaltsangabe:

Build and deploy your AI models successfully by exploring model governance, fairness, bias, and potential pitfalls

Purchase of the print or Kindle book includes a free PDF eBook

Key Features

  • Learn ethical AI principles, frameworks, and governance
  • Understand the concepts of fairness assessment and bias mitigation
  • Introduce explainable AI and transparency in your machine learning models

Book Description

Responsible AI in the Enterprise is a comprehensive guide to implementing ethical, transparent, and compliant AI systems in an organization. With a focus on understanding key concepts of machine learning models, this book equips you with techniques and algorithms to tackle complex issues such as bias, fairness, and model governance.

Throughout the book, you’ll gain an understanding of FairLearn and InterpretML, along with Google What-If Tool, ML Fairness Gym, IBM AI 360 Fairness tool, and Aequitas. You’ll uncover various aspects of responsible AI, including model interpretability, monitoring and management of model drift, and compliance recommendations. You’ll gain practical insights into using AI governance tools to ensure fairness, bias mitigation, explainability, privacy compliance, and privacy in an enterprise setting. Additionally, you’ll explore interpretability toolkits and fairness measures offered by major cloud AI providers like IBM, Amazon, Google, and Microsoft, while discovering how to use FairLearn for fairness assessment and bias mitigation. You’ll also learn to build explainable models using global and local feature summary, local surrogate model, Shapley values, anchors, and counterfactual explanations.

By the end of this book, you’ll be well-equipped with tools and techniques to create transparent and accountable machine learning models.

What you will learn

  • Understand explainable AI fundamentals, underlying methods, and techniques
  • Explore model governance, including building explainable, auditable, and interpretable machine learning models
  • Use partial dependence plot, global feature summary, individual condition expectation, and feature interaction
  • Build explainable models with global and local feature summary, and influence functions in practice
  • Design and build explainable machine learning pipelines with transparency
  • Discover Microsoft FairLearn and marketplace for different open-source explainable AI tools and cloud platforms

Who this book is for

This book is for data scientists, machine learning engineers, AI practitioners, IT professionals, business stakeholders, and AI ethicists who are responsible for implementing AI models in their organizations.

Table of Contents

  1. A Primer on Explainable and Ethical AI
  2. Algorithms Gone Wild - Bias's Greatest Hits
  3. Opening the Algorithmic Blackbox
  4. Operationalizing Model Monitoring
  5. Model Governance - Audit, and Compliance Standards & Recommendations
  6. Enterprise Starter Kit for Fairness, Accountability and Transparency
  7. Interpretability Toolkits and Fairness Measures – AWS, GCP, Azure, and AIF 360
  8. Fairness in AI System with Microsoft FairLearn
  9. Fairness Assessment and Bias Mitigation with FairLearn and Responsible AI Toolbox
  10. Foundational Models and Azure OpenAI

Über die Autorin bzw. den Autor: Adnan Masood, PhD is a visionary leader practitioner in the field of artificial intelligence, with over 20 years of experience in financial technology and large-scale systems development. He drives the firm's digital transformation, machine learning, and AI strategy. Dr. Masood collaborates with renowned institutions like Stanford AI Lab and MIT CSAIL, holds several patents in AI and machine learning, and is recognized by Microsoft as an AI MVP and Regional Director. In addition to his work in the technology industry, Dr. Masood is a published author, international speaker, STEM robotics coach, and diversity advocate.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Responsible AI in the Enterprise: Practical ...
Verlag: Packt Publishing
Erscheinungsdatum: 2023
Einband: Softcover
Zustand: New

ZVAB ist ein Internet-Marktplatz für neue, gebrauchte, antiquarische und vergriffene Bücher. Bei uns finden Sie Tausende professioneller Buchhändler weltweit und Millionen Bücher. Einkaufen beim ZVAB ist einfach und zu 100% sicher — Suchen Sie nach Ihrem Buch, erwerben Sie es über unsere sichere Kaufabwicklung und erhalten Sie Ihr Buch direkt vom Händler.

Millionen neuer und gebrauchter Bücher bei tausenden Anbietern

Antiquarische Bücher

Antiquarische Bücher

Von seltenen Erstausgaben bis hin zu begehrten signierten Ausgaben – beim ZVAB finden Sie eine große Anzahl seltener, wertvoller Bücher und Sammlerstücke.

ZVAB Startseite

Erstausgaben

Erstausgaben

Erstausgaben sind besondere Bücher, die den ersten Abdruck des Textes in seiner ursprünglichen Form darstellen. Hier finden sie Erstausgaben von damals bis heute.

Erstausgaben

Gebrauchte Bücher

Gebrauchte Bücher

Ob Bestseller oder Klassiker, das ZVAB bietet Ihnen eine breite Auswahl an gebrauchten Büchern: Stöbern Sie in unseren Rubriken und entdecken Sie ein Buch-Schnäppchen.

Gebrauchte Bücher

Mehr Bücher entdecken