Anbieter: WeBuyBooks, Rossendale, LANCS, Vereinigtes Königreich
EUR 3,08
Anzahl: 1 verfügbar
In den WarenkorbZustand: Very Good. Most items will be dispatched the same or the next working day. A copy that has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged.
Hardcover. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.65.
Anbieter: PsychoBabel & Skoob Books, Didcot, Vereinigtes Königreich
EUR 28,40
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Good. Sound publiation with clean pages and clear content. Typical (but minimal) library markings.
Anbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland
25 cm, 561 g. VIII, 246 S. Gebunden. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Deutsch.
EUR 75,28
Anzahl: 1 verfügbar
In den WarenkorbZustand: New.
tapa dura. Zustand: Bien. Modular learning in neural networks : a modularized approach to neural network classification New York. 1992. 25 cm. xiii, 235 pages. Encuadernación en tapa dura de editorial con sobrecubierta. Idioma Inglés. Sixth-generation computer technology series. Includes index . ISBN: 0471571547 (=3134558=) PC188.
Anbieter: Ammareal, Morangis, Frankreich
No jacket. Zustand: Bon. Ancien livre de bibliothèque avec équipements. Sans jaquette. Couverture différente. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Good. Former library book. No dust jacket. Different cover. Ammareal gives back up to 15% of this item's net price to charity organizations.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 88,00
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 226 pages. 9.25x6.10x0.71 inches. In Stock.
Verlag: Springer, Berlin|Springer International Publishing|Springer, 2024
ISBN 10: 3031190769 ISBN 13: 9783031190766
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 55,78
Anzahl: Mehr als 20 verfügbar
In den WarenkorbKartoniert / Broschiert. Zustand: New.
Verlag: Springer International Publishing, Springer Nature Switzerland Mär 2024, 2024
ISBN 10: 3031190769 ISBN 13: 9783031190766
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.Topics and features:Focuses on approaches supported by mathematical arguments, rather than sole computing experiencesInvestigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from themConsiders key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithmsExamines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problemAddresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrizationInvestigates the mathematical principles involves with natural language processing and computer visionKeeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire bookAlthough this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations ¿beyond¿ the sole computing experience.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 228 pp. Englisch.
Verlag: Springer International Publishing Mär 2024, 2024
ISBN 10: 3031190769 ISBN 13: 9783031190766
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.Topics and features:Focuses on approaches supported by mathematical arguments, rather than sole computing experiencesInvestigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from themConsiders key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithmsExamines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problemAddresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrizationInvestigates the mathematical principles involves with natural language processing and computer visionKeeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire bookAlthough this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations 'beyond' the sole computing experience.
Verlag: Springer, Berlin|Springer International Publishing|Springer, 2022
ISBN 10: 3031190734 ISBN 13: 9783031190735
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 77,17
Anzahl: Mehr als 20 verfügbar
In den WarenkorbGebunden. Zustand: New.
Verlag: Springer Nature Switzerland, 2024
ISBN 10: 3031190769 ISBN 13: 9783031190766
Sprache: Englisch
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Mathematical Foundations of Data Science | Tomas Hrycej (u. a.) | Taschenbuch | xiii | Englisch | 2024 | Springer Nature Switzerland | EAN 9783031190766 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Anbieter: Phatpocket Limited, Waltham Abbey, HERTS, Vereinigtes Königreich
EUR 126,74
Anzahl: 1 verfügbar
In den WarenkorbZustand: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions.
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Verlag: Springer International Publishing, Springer Nature Switzerland Mär 2023, 2023
ISBN 10: 3031190734 ISBN 13: 9783031190735
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.Topics and features:Focuses on approaches supported by mathematical arguments, rather than sole computing experiencesInvestigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from themConsiders key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithmsExamines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problemAddresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrizationInvestigates the mathematical principles involves with natural language processing and computer visionKeeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire bookAlthough this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations ¿beyond¿ the sole computing experience.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 228 pp. Englisch.
Verlag: Springer International Publishing, 2023
ISBN 10: 3031190734 ISBN 13: 9783031190735
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.Topics and features:Focuses on approaches supported by mathematical arguments, rather than sole computing experiencesInvestigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from themConsiders key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithmsExamines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problemAddresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrizationInvestigates the mathematical principles involves with natural language processing and computer visionKeeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire bookAlthough this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations 'beyond' the sole computing experience.
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 235 | Sprache: Englisch | Produktart: Bücher.
Anbieter: moluna, Greven, Deutschland
EUR 17,93
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
EUR 18,34
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: Springer Berlin Heidelberg, 2017
ISBN 10: 366254167X ISBN 13: 9783662541678
Sprache: Deutsch
Anbieter: moluna, Greven, Deutschland
EUR 49,99
Anzahl: Mehr als 20 verfügbar
In den WarenkorbGebunden. Zustand: New.
Verlag: Springer, Berlin, Springer Berlin Heidelberg, Springer Vieweg, 2017
ISBN 10: 366254167X ISBN 13: 9783662541678
Sprache: Deutsch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Das Buch präsentiert eine Methodik für robuste Regelung, wie sie für sicherheitskritische Anwendungen wie autonomes Fahren erforderlich ist. Sie deckt alle notwendigen Schritte ab: quantitative Anforderungen an die Robustheit, Modellidentifikation aus Messdaten, Reglerentwurf und Maßnahmen bei auftretenden Instabilitäten. Alle Schritte sind praktisch durchführbar, und tragen dem typischen Qualifikationsprofil eines Entwicklungsingenieurs Rechnung, ohne enzyklopädisch auf die erhebliche Breite und Tiefe der Theorie der robusten Regelung zurückgreifen zu müssen. Um die dargestellten Algorithmen detailliert nachvollziehbar zu machen, kann die verwendete Software von der Verlags-Webseite als Zusatzmaterial heruntergeladen werden.
Zustand: Hervorragend. Zustand: Hervorragend | Sprache: Deutsch | Produktart: Bücher.