Verlag: Nova Science Publishers Inc, 2014
ISBN 10: 1629486353 ISBN 13: 9781629486352
Sprache: Englisch
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 174,90
Anzahl: 3 verfügbar
In den WarenkorbHRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Verlag: Nova Science Publishers Inc, 2014
ISBN 10: 1629486353 ISBN 13: 9781629486352
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. KlappentextrnrnThis book is devoted to applications of fractional calculus in classical fields of mathematics like analysis, dynamics, partial differential equations and optimal control. The first chapter deals with the notion of local fractiona.
Verlag: Nova Science Publishers Inc, 2014
ISBN 10: 1629486353 ISBN 13: 9781629486352
Sprache: Englisch
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. Editor(s): Cresson, Jacky. Num Pages: 242 pages, illustrations. BIC Classification: PBK. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 258 x 180 x 19. Weight in Grams: 618. . 2014. UK ed. Hardcover. . . . . Books ship from the US and Ireland.
Verlag: Nova Science Publishers Inc, 2014
ISBN 10: 1629486353 ISBN 13: 9781629486352
Sprache: Englisch
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Fractional Calculus in Analysis, Dynamics & Optimal Control | Buch | Gebunden | Englisch | 2014 | Nova Science Publishers Inc | EAN 9781629486352 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu.
Verlag: Nova Science Publishers Inc Mär 2014, 2014
ISBN 10: 1629486353 ISBN 13: 9781629486352
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - This book is devoted to applications of fractional calculus in classical fields of mathematics like analysis, dynamics, partial differential equations and optimal control. The first chapter deals with the notion of local fractional derivatives and its applications to the study of regularity and geometry of curves. The second chapter develops the notion of fractional embedding and fractional assymetric calculus of variations in order to find fractional Lagrangian variational structures for classical dissipative partial differential equations. In continuation of this chapter, a fractional analogue of the classical Pontryagin maximum principle is proved for discrete and continuous fractional optimal control problems. The fourth chapter gives a first mathematical model that allows a rigorous connection to be made between the dynamics of chaotic Hamiltonian systems and fractional dynamics, mixing the previous approaches of G Zaslavsky and R Hilfer. Finally, numerical methods to deal with fractional optimal control problems are discussed and implemented. All the chapters are self-contained and complete proofs are given.