Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 58,11
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 2013 edition. 262 pages. 9.25x6.50x0.50 inches. In Stock.
Zustand: New. 2013. 2013th Edition. paperback. . . . . . Books ship from the US and Ireland.
Sprache: Englisch
Verlag: Basel. Birkhäuser Verlag., 2013
ISBN 10: 3034806175 ISBN 13: 9783034806176
Anbieter: Antiquariat Bernhardt, Kassel, Deutschland
kartoniert kartoniert. Zustand: Sehr gut. 249 Seiten, mit Abbildungen, Zust: Gutes Exemplar. Schneller Versand und persönlicher Service - jedes Buch händisch geprüft und beschrieben - aus unserem Familienbetrieb seit über 25 Jahren. Eine Rechnung mit ausgewiesener Mehrwertsteuer liegt jeder unserer Lieferungen bei. Wir versenden mit der deutschen Post. Sprache: Englisch Gewicht in Gramm: 518.
Anbieter: moluna, Greven, Deutschland
EUR 49,21
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Sprache: Englisch
Verlag: Springer, Basel, Birkhäuser, 2013
ISBN 10: 3034806175 ISBN 13: 9783034806176
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - The notes in this volume correspond to advanced courses held at the Centre de Recerca Matemàtica as part of the research program in Arithmetic Geometry in the 2009-2010 academic year.The notes by Laurent Berger provide an introduction to p-adic Galois representations and Fontaine rings, which are especially useful for describing many local deformation rings at p that arise naturally in Galois deformation theory.The notes by Gebhard Böckle offer a comprehensive course on Galois deformation theory, starting from the foundational results of Mazur and discussing in detail the theory of pseudo-representations and their deformations, local deformations at places l p and local deformations at p which are flat. In the last section,the results of Böckle and Kisin on presentations of global deformation rings over local ones are discussed. The notes by Mladen Dimitrov present the basics of the arithmetic theory of Hilbert modular forms and varieties, with an emphasis on the study of the images of the attached Galois representations, on modularity lifting theorems over totally real number fields, and on the cohomology of Hilbert modular varieties with integral coefficients. The notes by Lassina Dembélé and John Voight describe methods for performing explicit computations in spaces of Hilbert modular forms. These methods dependon the Jacquet-Langlands correspondence and on computations in spaces of quaternionic modular forms, both for the case of definite and indefinite quaternion algebras. Several examples are given, and applications to modularity of Galois representations are discussed. The notes by Tim Dokchitser describe the proof, obtained by the author in a joint project with Vladimir Dokchitser, of the parity conjecture for elliptic curves over number fields under the assumption of finiteness of the Tate-Shafarevich group. The statement of the Birch and Swinnerton-Dyer conjecture is included, as well as a detailed study of local and global root numbers of elliptic curves and their classification.