Verwandte Artikel zu Elliptic Curves, Hilbert Modular Forms and Galois Deformatio...

Elliptic Curves, Hilbert Modular Forms and Galois Deformations (Advanced Courses in Mathematics - C.R.M. Barcelona) - Softcover

 
9783034806176: Elliptic Curves, Hilbert Modular Forms and Galois Deformations (Advanced Courses in Mathematics - C.R.M. Barcelona)

Inhaltsangabe

The notes in this volume correspond to advanced courses held at the Centre de Recerca Matemàtica as part of the research program in Arithmetic Geometry in the 2009-2010 academic year.

The notes by Laurent Berger provide an introduction to p-adic Galois representations and Fontaine rings, which are especially useful for describing many local deformation rings at p that arise naturally in Galois deformation theory.

The notes by Gebhard Böckle offer a comprehensive course on Galois deformation theory, starting from the foundational results of Mazur and discussing in detail the theory of pseudo-representations and their deformations, local deformations at places l ≠ p and local deformations at p which are flat. In the last section,the results of Böckle and Kisin on presentations of global deformation rings over local ones are discussed.

 The notes by Mladen Dimitrov present the basics of the arithmetic theory of Hilbert modular forms and varieties, with an emphasis on the study of the images of the attached Galois representations, on modularity lifting theorems over totally real number fields, and on the cohomology of Hilbert modular varieties with integral coefficients.

 The notes by Lassina Dembélé and John Voight describe methods for performing explicit computations in spaces of Hilbert modular forms. These methods depend on the Jacquet-Langlands correspondence and on computations in spaces of quaternionic modular forms, both for the case of definite and indefinite quaternion algebras. Several examples are given, and applications to modularity of Galois representations are discussed.

 The notes by Tim Dokchitser describe the proof, obtained by the author in a joint project with Vladimir Dokchitser, of the parity conjecture for elliptic curves over number fields under the assumption of finiteness of the Tate-Shafarevich group. The statement of the Birch and Swinnerton-Dyer conjecture is included, as well as a detailed study of local and global root numbers of elliptic curves and their classification.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Von der hinteren Coverseite

The notes in this volume correspond to advanced courses held at the Centre de Recerca Matemàtica as part of the research program in Arithmetic Geometry in the 2009-2010 academic year.

The notes by Laurent Berger provide an introduction to p-adic Galois representations and Fontaine rings, which are especially useful for describing many local deformation rings at p that arise naturally in Galois deformation theory.

The notes by Gebhard Böckle offer a comprehensive course on Galois deformation theory, starting from the foundational results of Mazur and discussing in detail the theory of pseudo-representations and their deformations, local deformations at places l ? p and local deformations at p which are flat. In the last section,the results of Böckle and Kisin on presentations of global deformation rings over local ones are discussed.

The notes by Mladen Dimitrov present the basics of the arithmetic theory of Hilbert modular forms and varieties, with an emphasis on the study of the images of the attached Galois representations, on modularity lifting theorems over totally real number fields, and on the cohomology of Hilbert modular varieties with integral coefficients.

The notes by Lassina Dembélé and John Voight describe methods for performing explicit computations in spaces of Hilbert modular forms. These methods depend on the Jacquet-Langlands correspondence and on computations in spaces of quaternionic modular forms, both for the case of definite and indefinite quaternion algebras. Several examples are given, and applications to modularity of Galois representations are discussed.

The notes by Tim Dokchitser describe the proof, obtained by the author in a joint project with Vladimir Dokchitser, of the parity conjecture for elliptic curves over number fields under the assumption of finiteness of the Tate-Shafarevich group. The statement of the Birch and Swinnerton-Dyer conjecture is included, as well as a detailed study of local and global root numbers of elliptic curves and their classification.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 5,74 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783034806190: Elliptic Curves, Hilbert Modular Forms and Galois Deformations

Vorgestellte Ausgabe

ISBN 10:  3034806191 ISBN 13:  9783034806190
Verlag: Birkhäuser, 2013
Softcover

Suchergebnisse für Elliptic Curves, Hilbert Modular Forms and Galois Deformatio...

Beispielbild für diese ISBN

Berger, Laurent; Böckle, Gebhard; Dembélé, Lassina; Dimitrov, Mladen; Dokchitser, Tim; Voight, John
Verlag: Birkhäuser, 2013
ISBN 10: 3034806175 ISBN 13: 9783034806176
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In English. Artikel-Nr. ria9783034806176_new

Verkäufer kontaktieren

Neu kaufen

EUR 38,13
Währung umrechnen
Versand: EUR 5,74
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Laurent Berger|Gebhard Böckle|Lassina Dembélé|Mladen Dimitrov|Tim Dokchitser|John Voight
Verlag: Springer Basel, 2013
ISBN 10: 3034806175 ISBN 13: 9783034806176
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Artikel-Nr. 4318300

Verkäufer kontaktieren

Neu kaufen

EUR 49,21
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Laurent Berger
ISBN 10: 3034806175 ISBN 13: 9783034806176
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware - The notes in this volume correspond to advanced courses held at the Centre de Recerca Matemàtica as part of the research program in Arithmetic Geometry in the 2009-2010 academic year.The notes by Laurent Berger provide an introduction to p-adic Galois representations and Fontaine rings, which are especially useful for describing many local deformation rings at p that arise naturally in Galois deformation theory.The notes by Gebhard Böckle offer a comprehensive course on Galois deformation theory, starting from the foundational results of Mazur and discussing in detail the theory of pseudo-representations and their deformations, local deformations at places l p and local deformations at p which are flat. In the last section,the results of Böckle and Kisin on presentations of global deformation rings over local ones are discussed. The notes by Mladen Dimitrov present the basics of the arithmetic theory of Hilbert modular forms and varieties, with an emphasis on the study of the images of the attached Galois representations, on modularity lifting theorems over totally real number fields, and on the cohomology of Hilbert modular varieties with integral coefficients. The notes by Lassina Dembélé and John Voight describe methods for performing explicit computations in spaces of Hilbert modular forms. These methods dependon the Jacquet-Langlands correspondence and on computations in spaces of quaternionic modular forms, both for the case of definite and indefinite quaternion algebras. Several examples are given, and applications to modularity of Galois representations are discussed. The notes by Tim Dokchitser describe the proof, obtained by the author in a joint project with Vladimir Dokchitser, of the parity conjecture for elliptic curves over number fields under the assumption of finiteness of the Tate-Shafarevich group. The statement of the Birch and Swinnerton-Dyer conjecture is included, as well as a detailed study of local and global root numbers of elliptic curves and their classification. Artikel-Nr. 9783034806176

Verkäufer kontaktieren

Neu kaufen

EUR 59,42
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Berger, Laurent/ Böckle, Gebhard/ Dembélé, Lassina/ Dimitrov, Mladen/ Dokchitser, Tim
Verlag: Birkhauser, 2013
ISBN 10: 3034806175 ISBN 13: 9783034806176
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 2013 edition. 262 pages. 9.25x6.50x0.50 inches. In Stock. Artikel-Nr. x-3034806175

Verkäufer kontaktieren

Neu kaufen

EUR 58,82
Währung umrechnen
Versand: EUR 11,53
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb