Anbieter: Antiquariat Deinbacher, Murstetten, Österreich
EUR 49,00
Währung umrechnenAnzahl: 1 verfügbar
In den Warenkorb8° , Hardcover/Pappeinband. 1.Auflage,. xi, 195 Seiten Einband etwas berieben, Bibl.Ex., innen guter und sauberer Zustand 9783764350758 Sprache: Englisch Gewicht in Gramm: 481.
Anbieter: David Bunnett Books, London, Vereinigtes Königreich
Erstausgabe
EUR 61,40
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHARDCOVER. Zustand: As New. 1st Edition. 1st printing. 8vo in printed boards, 195pp, index . [CONDITION: An extremely well preserved AS NEW unread and unmarked copy ] . __To see more of our Science and Engineering books type DbbSCIENCE in the Keywords search box . . We always ship in STRONG PROTECTIVE CARD PARCELS.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 75,72
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Basel. Birkhäuser Verlag., 1994
ISBN 10: 376435075X ISBN 13: 9783764350758
Sprache: Englisch
Anbieter: Antiquariat Bernhardt, Kassel, Deutschland
EUR 56,24
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbKarton. Zustand: Sehr gut. Zust: Gutes Exemplar. 195 Seiten, mit Abbildungen, Englisch 482g.
Verlag: Springer, Basel, Birkhäuser Basel, Birkhäuser Verlag, Birkhäuser, 2009
ISBN 10: 3034603312 ISBN 13: 9783034603317
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 84,52
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In the last fteen years two seemingly unrelated problems, one in computer science and the other in measure theory, were solved by amazingly similar techniques from representation theory and from analytic number theory. One problem is the - plicit construction of expanding graphs ('expanders'). These are highly connected sparse graphs whose existence can be easily demonstrated but whose explicit c- struction turns out to be a dif cult task. Since expanders serve as basic building blocks for various distributed networks, an explicit construction is highly des- able. The other problem is one posed by Ruziewicz about seventy years ago and studied by Banach [Ba]. It asks whether the Lebesgue measure is the only nitely additive measure of total measure one, de ned on the Lebesgue subsets of the n-dimensional sphere and invariant under all rotations. The two problems seem, at rst glance, totally unrelated. It is therefore so- what surprising that both problems were solved using similar methods: initially, Kazhdan's property (T) from representation theory of semi-simple Lie groups was applied in both cases to achieve partial results, and later on, both problems were solved using the (proved) Ramanujan conjecture from the theory of automorphic forms. The fact that representation theory and automorphic forms have anything to do with these problems is a surprise and a hint as well that the two questions are strongly related.