Verlag: Springer Nature Switzerland AG, 2022
ISBN 10: 3030931579 ISBN 13: 9783030931575
Sprache: Englisch
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 35,31
Anzahl: 1 verfügbar
In den WarenkorbHRD. Zustand: Used - Good. Used Book. Shipped from UK. Established seller since 2000.
Verlag: Springer Nature Switzerland AG, 2022
ISBN 10: 3030931579 ISBN 13: 9783030931575
Sprache: Englisch
Anbieter: PBShop.store US, Wood Dale, IL, USA
HRD. Zustand: Used - Good. Used Book. Shipped from UK. Established seller since 2000.
paperback. Zustand: Very Good.
EUR 27,48
Anzahl: 1 verfügbar
In den WarenkorbSoft cover. Zustand: Fine.
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
EUR 47,35
Anzahl: 2 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
EUR 47,01
Anzahl: 1 verfügbar
In den WarenkorbZustand: New.
Verlag: Springer Nature Switzerland AG, 2022
ISBN 10: 3030931579 ISBN 13: 9783030931575
Sprache: Englisch
Anbieter: PBShop.store US, Wood Dale, IL, USA
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Verlag: Springer-Nature New York Inc, 2023
ISBN 10: 3030931609 ISBN 13: 9783030931605
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 58,14
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 215 pages. 9.25x6.10x0.46 inches. In Stock.
Verlag: Springer Nature Switzerland AG, 2022
ISBN 10: 3030931579 ISBN 13: 9783030931575
Sprache: Englisch
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 65,17
Anzahl: 1 verfügbar
In den WarenkorbHRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
ISBN 10: 3031640861 ISBN 13: 9783031640865
Sprache: Englisch
Anbieter: Books From California, Simi Valley, CA, USA
hardcover. Zustand: Very Good.
EUR 79,65
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 215 pages. 9.25x6.10x0.59 inches. In Stock.
EUR 44,26
Anzahl: 2 verfügbar
In den WarenkorbZustand: NEW.
Hardcover. Zustand: Very good. Hardcover Octavo. illustrated boards, 197 pp Standard shipping (no tracking or insurance) / Priority (with tracking) / Custom quote for large or heavy orders.
Verlag: Springer-Nature New York Inc, 2024
ISBN 10: 3031640861 ISBN 13: 9783031640865
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 87,75
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 2nd edition. 340 pages. 9.25x6.25x0.75 inches. In Stock.
Verlag: Springer, Berlin|Springer International Publishing|Springer, 2023
ISBN 10: 3030931609 ISBN 13: 9783030931605
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
Zustand: New. This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting parad.
Verlag: Springer Nature Switzerland AG, 2023
ISBN 10: 3030931609 ISBN 13: 9783030931605
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting paradigm, called deep generative modeling, utilizes the generative perspective on perceiving the surrounding world. It assumes that each phenomenon is driven by an underlying generative process that defines a joint distribution over random variables and their stochastic interactions, i.e., how events occur and in what order. The adjective 'deep' comes from the fact that the distribution is parameterized using deep neural networks. There are two distinct traits of deep generative modeling. First, the application of deep neural networks allows rich and flexible parameterization of distributions. Second, the principled manner of modeling stochastic dependencies using probability theory ensures rigorous formulation and prevents potential flaws in reasoning. Moreover, probability theory provides a unified framework where the likelihood function plays a crucial role in quantifying uncertainty and defining objective functions.Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics in machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It will appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics, who wish to become familiar with deep generative modeling. To engage the reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on github.The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.
EUR 110,80
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 215 pages. 9.25x6.10x0.59 inches. In Stock.
Verlag: Springer Nature Switzerland AG, 2023
ISBN 10: 3030931609 ISBN 13: 9783030931605
Sprache: Englisch
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Deep Generative Modeling | Jakub M. Tomczak | Taschenbuch | xviii | Englisch | 2023 | Springer Nature Switzerland AG | EAN 9783030931605 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Verlag: Springer, Palgrave Macmillan Sep 2024, 2024
ISBN 10: 3031640861 ISBN 13: 9783031640865
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering.
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering.
Taschenbuch. Zustand: Neu. Deep Generative Modeling | Jakub M. Tomczak | Taschenbuch | xxiii | Englisch | 2025 | Springer | EAN 9783031640896 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Verlag: Springer International Publishing, 2022
ISBN 10: 3030931579 ISBN 13: 9783030931575
Sprache: Englisch
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher.
Buch. Zustand: Neu. Deep Generative Modeling | Jakub M. Tomczak | Buch | Gebunden | Englisch | 2022 | Springer | EAN 9783030931575 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu.
Verlag: Springer, Berlin, Springer International Publishing, Springer, 2022
ISBN 10: 3030931579 ISBN 13: 9783030931575
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting paradigm, called deep generative modeling, utilizes the generative perspective on perceiving the surrounding world. It assumes that each phenomenon is driven by an underlying generative process that defines a joint distribution over random variables and their stochastic interactions, i.e., how events occur and in what order. The adjective 'deep' comes from the fact that the distribution is parameterized using deep neural networks. There are two distinct traits of deep generative modeling. First, the application of deep neural networks allows rich and flexible parameterization of distributions. Second, the principled manner of modeling stochastic dependencies using probability theory ensures rigorous formulation and prevents potential flaws in reasoning. Moreover, probability theory provides a unified framework where the likelihood function plays a crucial role in quantifying uncertainty and defining objective functions.Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics in machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It will appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics, who wish to become familiar with deep generative modeling. To engage the reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on github.The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.