Verlag: Springer (edition 1st ed. 2022), 2022
ISBN 10: 3030931579 ISBN 13: 9783030931575
Sprache: Englisch
Anbieter: BooksRun, Philadelphia, PA, USA
EUR 18,41
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Very Good. 1st ed. 2022. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported.
EUR 50,00
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Very good. Hardcover Octavo. illustrated boards, 197 pp Standard shipping (no tracking or insurance) / Priority (with tracking) / Custom quote for large or heavy orders.
Verlag: Springer, Berlin|Springer International Publishing|Springer, 2024
ISBN 10: 3031640861 ISBN 13: 9783031640865
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 57,62
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbZustand: New. This first comprehensive book on models behind Generative AI has been thoroughly revised to cover all major classes of deep generative models: mixture models, Probabilistic Circuits, Autoregressive Models, Flow-based Models, Latent Variable Models, GANs,.
Verlag: Springer Nature Switzerland AG, 2022
ISBN 10: 3030931579 ISBN 13: 9783030931575
Sprache: Englisch
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 57,93
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHRD. Zustand: Used - Good. Used Book. Shipped from UK. Established seller since 2000.
Verlag: Springer International Publishing, Springer International Publishing Sep 2024, 2024
ISBN 10: 3031640861 ISBN 13: 9783031640865
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
EUR 64,19
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbBuch. Zustand: Neu. Neuware Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 340 pp. Englisch.
Verlag: Springer International Publishing, Springer International Publishing Sep 2024, 2024
ISBN 10: 3031640861 ISBN 13: 9783031640865
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 64,19
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbBuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering.
Verlag: Springer Nature Switzerland AG, 2022
ISBN 10: 3030931579 ISBN 13: 9783030931575
Sprache: Englisch
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 73,60
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
ISBN 10: 3031640861 ISBN 13: 9783031640865
Sprache: Englisch
Anbieter: Books From California, Simi Valley, CA, USA
EUR 50,25
Währung umrechnenAnzahl: 1 verfügbar
In den Warenkorbhardcover. Zustand: Very Good.
Verlag: Springer, Berlin, Springer International Publishing, Springer, 2022
ISBN 10: 3030931579 ISBN 13: 9783030931575
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 93,52
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbBuch. Zustand: Neu. Neuware - This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting paradigm, called deep generative modeling, utilizes the generative perspective on perceiving the surrounding world. It assumes that each phenomenon is driven by an underlying generative process that defines a joint distribution over random variables and their stochastic interactions, i.e., how events occur and in what order. The adjective 'deep' comes from the fact that the distribution is parameterized using deep neural networks. There are two distinct traits of deep generative modeling. First, the application of deep neural networks allows rich and flexible parameterization of distributions. Second, the principled manner of modeling stochastic dependencies using probability theory ensures rigorous formulation and prevents potential flaws in reasoning. Moreover, probability theory provides a unified framework where the likelihood function plays a crucial role in quantifying uncertainty and defining objective functions.Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics in machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It will appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics, who wish to become familiar with deep generative modeling. To engage the reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on github.The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.
EUR 86,28
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 215 pages. 9.25x6.10x0.59 inches. In Stock.
Verlag: Springer-Nature New York Inc, 2024
ISBN 10: 3031640861 ISBN 13: 9783031640865
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 93,74
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 2nd edition. 340 pages. 9.25x6.25x0.75 inches. In Stock.
ISBN 10: 3031640861 ISBN 13: 9783031640865
Sprache: Englisch
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 73,82
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
EUR 20,31
Währung umrechnenAnzahl: 2 verfügbar
In den Warenkorbpaperback. Zustand: Very Good.
EUR 28,27
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbSoft cover. Zustand: Fine.
Verlag: Springer International Publishing, Springer International Publishing, 2023
ISBN 10: 3030931609 ISBN 13: 9783030931605
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 53,49
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting paradigm, called deep generative modeling, utilizes the generative perspective on perceiving the surrounding world. It assumes that each phenomenon is driven by an underlying generative process that defines a joint distribution over random variables and their stochastic interactions, i.e., how events occur and in what order. The adjective 'deep' comes from the fact that the distribution is parameterized using deep neural networks. There are two distinct traits of deep generative modeling. First, the application of deep neural networks allows rich and flexible parameterization of distributions. Second, the principled manner of modeling stochastic dependencies using probability theory ensures rigorous formulation and prevents potential flaws in reasoning. Moreover, probability theory provides a unified framework where the likelihood function plays a crucial role in quantifying uncertainty and defining objective functions.Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics in machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It will appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics, who wish to become familiar with deep generative modeling. To engage the reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on github.The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.
Verlag: Springer, Berlin|Springer International Publishing|Springer, 2023
ISBN 10: 3030931609 ISBN 13: 9783030931605
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 57,84
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: New. This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting parad.
EUR 55,63
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Springer-Nature New York Inc, 2023
ISBN 10: 3030931609 ISBN 13: 9783030931605
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 76,53
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 215 pages. 9.25x6.10x0.46 inches. In Stock.