Verwandte Artikel zu Deep Generative Modeling

Tomczak, Jakub M. Deep Generative Modeling ISBN 13: 9783030931575

Deep Generative Modeling - Hardcover

 
9783030931575: Deep Generative Modeling

Inhaltsangabe

This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting paradigm, called deep generative modeling, utilizes the generative perspective on perceiving the surrounding world. It assumes that each phenomenon is driven by an underlying generative process that defines a joint distribution over random variables and their stochastic interactions, i.e., how events occur and in what order. The adjective "deep" comes from the fact that the distribution is parameterized using deep neural networks. There are two distinct traits of deep generative modeling. First, the application of deep neural networks allows rich and flexible parameterization of distributions. Second, the principled manner of modeling stochastic dependencies using probability theory ensures rigorous formulation and prevents potential flaws in reasoning. Moreover, probability theory provides a unified framework where the likelihood function plays a crucial role in quantifying uncertainty and defining objective functions.

Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics in machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It will appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics, who wish to become familiar with deep generative modeling. To engage the reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on github.

The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.



Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Jakub Tomczak is an assistant professor of Artificial Intelligence in the Computational Intelligence group at Vrije Universiteit Amsterdam since November 2019. Before, from October 2018 to October 2019, he was a deep learning researcher (Staff Engineer) in Qualcomm AI Research in Amsterdam. From October 2016 to September 2018, he was a Marie Sklodowska-Curie Individual Fellow in Prof. Max Welling’s group at the University of Amsterdam. He obtained his Ph.D. in machine learning from the Wroclaw University of Technology. His research interests include probabilistic modeling, deep learning, approximate Bayesian modeling, and deep generative modeling (with special focus on Variational Auto-Encoders and Flow-based model).

Von der hinteren Coverseite

This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting paradigm, called deep generative modeling, utilizes the generative perspective on perceiving the surrounding world. It assumes that each phenomenon is driven by an underlying generative process that defines a joint distribution over random variables and their stochastic interactions, i.e., how events occur and in what order. The adjective "deep" comes from the fact that the distribution is parameterized using deep neural networks. There are two distinct traits of deep generative modeling. First, the application of deep neural networks allows rich and flexible parameterization of distributions. Second, the principled manner of modeling stochastic dependencies using probability theory ensures rigorous formulation and prevents potential flaws in reasoning. Moreover, probability theory provides a unified framework where the likelihood function plays a crucial role in quantifying uncertainty and defining objective functions.<div><br></div><div><i>Deep Generative Modeling</i>&nbsp;is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics in machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It will appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics, who wish to become familiar with deep generative modeling. To engage the reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on github.<br></div>

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
Ship within 24hrs. Satisfaction...
Diesen Artikel anzeigen

EUR 6,83 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

EUR 4,55 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783030931605: Deep Generative Modeling

Vorgestellte Ausgabe

ISBN 10:  3030931609 ISBN 13:  9783030931605
Verlag: Springer, 2023
Softcover

Suchergebnisse für Deep Generative Modeling

Beispielbild für diese ISBN

Tomczak, Jakub M.
ISBN 10: 3030931579 ISBN 13: 9783030931575
Gebraucht Hardcover

Anbieter: BooksRun, Philadelphia, PA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Very Good. 1st ed. 2022. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Artikel-Nr. 3030931579-8-1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 18,50
Währung umrechnen
Versand: EUR 6,83
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Tomczak, Jakub M.
Verlag: Springer, Switzerland, 2022
ISBN 10: 3030931579 ISBN 13: 9783030931575
Gebraucht Hardcover

Anbieter: San Francisco Book Company, Paris, Frankreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Very good. Hardcover Octavo. illustrated boards, 197 pp Standard shipping (no tracking or insurance) / Priority (with tracking) / Custom quote for large or heavy orders. Artikel-Nr. 103839

Verkäufer kontaktieren

Gebraucht kaufen

EUR 50,00
Währung umrechnen
Versand: EUR 4,00
Von Frankreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Jakub M. Tomczak
ISBN 10: 3030931579 ISBN 13: 9783030931575
Gebraucht Hardcover

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

HRD. Zustand: Used - Good. Used Book. Shipped from UK. Established seller since 2000. Artikel-Nr. P2-9783030931575

Verkäufer kontaktieren

Gebraucht kaufen

EUR 58,09
Währung umrechnen
Versand: EUR 4,55
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Jakub M. Tomczak
ISBN 10: 3030931579 ISBN 13: 9783030931575
Neu Hardcover

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. GB-9783030931575

Verkäufer kontaktieren

Neu kaufen

EUR 73,80
Währung umrechnen
Versand: EUR 4,55
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Jakub M. Tomczak
ISBN 10: 3030931579 ISBN 13: 9783030931575
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware - This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting paradigm, called deep generative modeling, utilizes the generative perspective on perceiving the surrounding world. It assumes that each phenomenon is driven by an underlying generative process that defines a joint distribution over random variables and their stochastic interactions, i.e., how events occur and in what order. The adjective 'deep' comes from the fact that the distribution is parameterized using deep neural networks. There are two distinct traits of deep generative modeling. First, the application of deep neural networks allows rich and flexible parameterization of distributions. Second, the principled manner of modeling stochastic dependencies using probability theory ensures rigorous formulation and prevents potential flaws in reasoning. Moreover, probability theory provides a unified framework where the likelihood function plays a crucial role in quantifying uncertainty and defining objective functions.Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics in machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It will appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics, who wish to become familiar with deep generative modeling. To engage the reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on github.The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them. Artikel-Nr. 9783030931575

Verkäufer kontaktieren

Neu kaufen

EUR 92,63
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Tomczak, Jakub M. (Author)
Verlag: Springer, 2022
ISBN 10: 3030931579 ISBN 13: 9783030931575
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 215 pages. 9.25x6.10x0.59 inches. In Stock. Artikel-Nr. zk3030931579

Verkäufer kontaktieren

Neu kaufen

EUR 86,52
Währung umrechnen
Versand: EUR 11,74
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb