Anbieter: Jackson Street Booksellers, Omaha, NE, USA
Erstausgabe
Hardcover. Zustand: Fine. No Jacket. 1st Edition. Fine in Hardcover. 236pp 8vo.
Sprache: Englisch
Verlag: Braunschweig. Friedr. Vieweg & Sohn Verlagsgesellschaft mbH., 1992
ISBN 10: 3528064331 ISBN 13: 9783528064334
Anbieter: Antiquariat Bernhardt, Kassel, Deutschland
Karton. Zustand: Sehr gut. Zust: Gutes Exemplar. 252 S. Englisch 488g.
Zustand: Good. Cover Ecke leicht beschädigt.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In this expository paper we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued mathematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to intro duce L-functions, the main motivation being the calculation of class numbers. In particular, Kummer showed that the class numbers of cyclotomic fields playa decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirich let had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by proper ties of L-functions. Twentieth century number theory, class field theory and algebraic geometry only strengthen the nineteenth century number theorists's view. We just mention the work of E. Heeke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generaliza tion of Dirichlet's L-functions with a generalization of class field the ory to non-abelian Galois extensions of number fields in mind. Weil introduced his zeta-function for varieties over finite fields in relation to a problem in number theory.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 110,99
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 2nd edition. 256 pages. 9.69x6.69x0.63 inches. In Stock.
Taschenbuch. Zustand: Neu. Conjectures in Arithmetic Algebraic Geometry | A Survey | Wilfred W. J. Hulsbergen | Taschenbuch | vii | Englisch | 1992 | Vieweg & Teubner | EAN 9783528064334 | Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, 65189 Wiesbaden, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Sprache: Englisch
Verlag: Vieweg+Teubner Verlag, Vieweg+Teubner Verlag, 2013
ISBN 10: 366309507X ISBN 13: 9783663095071
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In this expository text we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued math ematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to introduce L functions, the main, motivation being the calculation of class numbers. In partic ular, Kummer showed that the class numbers of cyclotomic fields play a decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirichlet had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by properties of L-functions. Twentieth century number theory, class field theory and algebraic geome try only strengthen the nineteenth century number theorists's view. We just mention the work of E. H~cke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generalization of Dirichlet's L-functions with a generalization of class field theory to non-abelian Galois extensions of number fields in mind.
Taschenbuch. Zustand: Neu. Conjectures in Arithmetic Algebraic Geometry | A Survey | Wilfred W. J. Hulsbergen | Taschenbuch | vii | Englisch | 2013 | Vieweg & Teubner | EAN 9783663095071 | Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, 65189 Wiesbaden, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Sprache: Deutsch
Verlag: Friedrich Vieweg & Sohn Verlagsgesellschaft mbH,, 1992
ISBN 10: 3528064331 ISBN 13: 9783528064334
Anbieter: Die Wortfreunde - Antiquariat Wirthwein Matthias Wirthwein, Mannheim, Deutschland
Gebundene Ausgabe. 236 Seiten 1992. Einband leicht berieben, sonst sehr gut. Sprache: Deutsch.