Verlag: Springer, New York, 2000
Sprache: Englisch
Anbieter: Antiquariat Renner OHG, Albstadt, Deutschland
Verbandsmitglied: BOEV
Hardcover. Zustand: Sehr gut. N.Y., Springer (2000). gr.8°. XV, 578 p. Hardbound. Graduate Texts in Mathematics, 193.- With exercises.- Name on flyleaf.
hardcover. Zustand: Gut. 596 Seiten; 9780387987279.3 Gewicht in Gramm: 4.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 102,86
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. reprint edition. 578 pages. 9.00x6.00x1.25 inches. In Stock.
Verlag: Springer New York, Springer US Okt 2012, 2012
ISBN 10: 1461264197 ISBN 13: 9781461264194
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -The computation of invariants of algebraic number fields such as integral bases, discriminants, prime decompositions, ideal class groups, and unit groups is important both for its own sake and for its numerous applications, for example, to the solution of Diophantine equations. The practical com pletion of this task (sometimes known as the Dedekind program) has been one of the major achievements of computational number theory in the past ten years, thanks to the efforts of many people. Even though some practical problems still exist, one can consider the subject as solved in a satisfactory manner, and it is now routine to ask a specialized Computer Algebra Sys tem such as Kant/Kash, liDIA, Magma, or Pari/GP, to perform number field computations that would have been unfeasible only ten years ago. The (very numerous) algorithms used are essentially all described in A Course in Com putational Algebraic Number Theory, GTM 138, first published in 1993 (third corrected printing 1996), which is referred to here as [CohO]. That text also treats other subjects such as elliptic curves, factoring, and primality testing. Itis important and natural to generalize these algorithms. Several gener alizations can be considered, but the most important are certainly the gen eralizations to global function fields (finite extensions of the field of rational functions in one variable overa finite field) and to relative extensions ofnum ber fields. As in [CohO], in the present book we will consider number fields only and not deal at all with function fields.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 600 pp. Englisch.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 131,44
Anzahl: 1 verfügbar
In den WarenkorbZustand: New. pp. 600 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam.
Verlag: Springer New York, Springer US, 2012
ISBN 10: 1461264197 ISBN 13: 9781461264194
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The computation of invariants of algebraic number fields such as integral bases, discriminants, prime decompositions, ideal class groups, and unit groups is important both for its own sake and for its numerous applications, for example, to the solution of Diophantine equations. The practical com pletion of this task (sometimes known as the Dedekind program) has been one of the major achievements of computational number theory in the past ten years, thanks to the efforts of many people. Even though some practical problems still exist, one can consider the subject as solved in a satisfactory manner, and it is now routine to ask a specialized Computer Algebra Sys tem such as Kant/Kash, liDIA, Magma, or Pari/GP, to perform number field computations that would have been unfeasible only ten years ago. The (very numerous) algorithms used are essentially all described in A Course in Com putational Algebraic Number Theory, GTM 138, first published in 1993 (third corrected printing 1996), which is referred to here as [CohO]. That text also treats other subjects such as elliptic curves, factoring, and primality testing. Itis important and natural to generalize these algorithms. Several gener alizations can be considered, but the most important are certainly the gen eralizations to global function fields (finite extensions of the field of rational functions in one variable overa finite field) and to relative extensions ofnum ber fields. As in [CohO], in the present book we will consider number fields only and not deal at all with function fields.
Anbieter: Buchpark, Trebbin, Deutschland
EUR 41,54
Anzahl: 1 verfügbar
In den WarenkorbZustand: Sehr gut. Zustand: Sehr gut | Seiten: 600 | Sprache: Englisch | Produktart: Bücher | The computation of invariants of algebraic number fields such as integral bases, discriminants, prime decompositions, ideal class groups, and unit groups is important both for its own sake and for its numerous applications, for example, to the solution of Diophantine equations. The practical com pletion of this task (sometimes known as the Dedekind program) has been one of the major achievements of computational number theory in the past ten years, thanks to the efforts of many people. Even though some practical problems still exist, one can consider the subject as solved in a satisfactory manner, and it is now routine to ask a specialized Computer Algebra Sys tem such as Kant/Kash, liDIA, Magma, or Pari/GP, to perform number field computations that would have been unfeasible only ten years ago. The (very numerous) algorithms used are essentially all described in A Course in Com putational Algebraic Number Theory, GTM 138, first published in 1993 (third corrected printing 1996), which is referred to here as [CohO]. That text also treats other subjects such as elliptic curves, factoring, and primality testing. Itis important and natural to generalize these algorithms. Several gener alizations can be considered, but the most important are certainly the gen eralizations to global function fields (finite extensions of the field of rational functions in one variable overa finite field) and to relative extensions ofnum ber fields. As in [CohO], in the present book we will consider number fields only and not deal at all with function fields.
Verlag: Springer New York, Springer US Nov 1999, 1999
ISBN 10: 0387987274 ISBN 13: 9780387987279
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -The computation of invariants of algebraic number fields such as integral bases, discriminants, prime decompositions, ideal class groups, and unit groups is important both for its own sake and for its numerous applications, for example, to the solution of Diophantine equations. The practical com pletion of this task (sometimes known as the Dedekind program) has been one of the major achievements of computational number theory in the past ten years, thanks to the efforts of many people. Even though some practical problems still exist, one can consider the subject as solved in a satisfactory manner, and it is now routine to ask a specialized Computer Algebra Sys tem such as Kant/Kash, liDIA, Magma, or Pari/GP, to perform number field computations that would have been unfeasible only ten years ago. The (very numerous) algorithms used are essentially all described in A Course in Com putational Algebraic Number Theory, GTM 138, first published in 1993 (third corrected printing 1996), which is referred to here as [CohO]. That text also treats other subjects such as elliptic curves, factoring, and primality testing. Itis important and natural to generalize these algorithms. Several gener alizations can be considered, but the most important are certainly the gen eralizations to global function fields (finite extensions of the field of rational functions in one variable overa finite field) and to relative extensions ofnum ber fields. As in [CohO], in the present book we will consider number fields only and not deal at all with function fields.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 600 pp. Englisch.
Verlag: Springer New York, Springer US, 1999
ISBN 10: 0387987274 ISBN 13: 9780387987279
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The computation of invariants of algebraic number fields such as integral bases, discriminants, prime decompositions, ideal class groups, and unit groups is important both for its own sake and for its numerous applications, for example, to the solution of Diophantine equations. The practical com pletion of this task (sometimes known as the Dedekind program) has been one of the major achievements of computational number theory in the past ten years, thanks to the efforts of many people. Even though some practical problems still exist, one can consider the subject as solved in a satisfactory manner, and it is now routine to ask a specialized Computer Algebra Sys tem such as Kant/Kash, liDIA, Magma, or Pari/GP, to perform number field computations that would have been unfeasible only ten years ago. The (very numerous) algorithms used are essentially all described in A Course in Com putational Algebraic Number Theory, GTM 138, first published in 1993 (third corrected printing 1996), which is referred to here as [CohO]. That text also treats other subjects such as elliptic curves, factoring, and primality testing. Itis important and natural to generalize these algorithms. Several gener alizations can be considered, but the most important are certainly the gen eralizations to global function fields (finite extensions of the field of rational functions in one variable overa finite field) and to relative extensions ofnum ber fields. As in [CohO], in the present book we will consider number fields only and not deal at all with function fields.