Verwandte Artikel zu Multi-faceted Deep Learning: Models and Data

Multi-faceted Deep Learning: Models and Data - Softcover

 
9783030744809: Multi-faceted Deep Learning: Models and Data

Inhaltsangabe

This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems. The fundamentals of  the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers  a comprehensive preamble for further  problem–oriented chapters. 

The most interesting and open problems of machine learning in the framework of  Deep Learning are discussed in this book and solutions are proposed.  This book illustrates how to implement the zero-shot learning with Deep Neural Network Classifiers, which require a large amount of training data. The lack of annotated training data naturally pushes the researchers to implement low supervision algorithms. Metric learning is a long-term research but in the framework of Deep Learning approaches, it gets freshness and originality. Fine-grained classification with a low inter-class variability is a difficult problem for any classification tasks.  This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks. 

Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Vision will want to buy this book. Advanced level students studying computer science within these topic areas will also find this book useful.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Prof. Jenny Benois-Pineau is a full professor of Computer Science at the University Bordeaux. Her topics of interest include image/multimedia, artificial intelligence in multimedia and healthcare. She is the author and co-author of more than 200 papers in international journals, conference proceedings, books and book chapters. She is associated editor of Eurasip SPIC, ACM MTAP, senior associated editor JEI SPIE journals. She has organized workshops and special sessions at international conferences IEEE ICIP, ACM MM,... She has served in numerous program committees in international conferences: ACM MM, ACM ICMR, ACM CIVR, CBMI, IPTA, ACM MMM. She has been coordinator or leading researcher in EU – funded and French national research projects. She is a member of IEEE TC IVMSP. She has Knight of Academic Palms grade.

Dr. Akka Zemmari has received his Ph.D. degree from the University of Bordeaux 1, France, in 2000. He is an associate professor in computer science since 2001 at University of Bordeaux, France. His research interests include Artificial Intelligence, Deep Learning, Distributed algorithms and systems, Graphs, Randomized Algorithms, and Security. He wrote one book and more than 80 research papers published in international journals and conference proceedings and he is involved in program committees and organization committees of international conferences. 

Von der hinteren Coverseite

This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems. The fundamentals of the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers a comprehensive preamble for further problem-oriented chapters.

The most interesting and open problems of machine learning in the framework of Deep Learning are discussed in this book and solutions are proposed. This book illustrates how to implement the zero-shot learning with Deep Neural Network Classifiers, which require a large amount of training data. The lack of annotated training data naturally pushes the researchers to implement low supervision algorithms. Metric learning is a long-term research but in the framework of Deep Learning approaches, it gets freshness and originality. Fine-grained classification with a low inter-class variability is a difficult problem for any classification tasks. This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks.

Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Vision will want to buy this book. Advanced level students studying computer science within these topic areas will also find this book useful.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783030744779: Multi-faceted Deep Learning: Models and Data

Vorgestellte Ausgabe

ISBN 10:  3030744779 ISBN 13:  9783030744779
Verlag: Springer, 2021
Hardcover

Suchergebnisse für Multi-faceted Deep Learning: Models and Data

Foto des Verkäufers

ISBN 10: 3030744809 ISBN 13: 9783030744809
Neu Kartoniert / Broschiert

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Kartoniert / Broschiert. Zustand: New. Artikel-Nr. 723463980

Verkäufer kontaktieren

Neu kaufen

EUR 162,51
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 2022
ISBN 10: 3030744809 ISBN 13: 9783030744809
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783030744809_new

Verkäufer kontaktieren

Neu kaufen

EUR 170,53
Währung umrechnen
Versand: EUR 5,72
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Akka Zemmari
ISBN 10: 3030744809 ISBN 13: 9783030744809
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems.The fundamentals of the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers a comprehensive preamble for further problem-oriented chapters.The most interesting and open problems of machine learning in the framework of Deep Learning are discussed in this book and solutions are proposed. This book illustrates how to implement the zero-shot learning with Deep Neural Network Classifiers, which require a large amount of training data. The lack of annotated training data naturally pushes the researchers to implement low supervision algorithms. Metric learning is a long-term research but in the framework of Deep Learning approaches, it gets freshness and originality. Fine-grained classification with a low inter-class variability is a difficult problem for any classification tasks. This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks.Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Vision will want to buy this book. Advanced level students studying computer science within these topic areas will also find this book useful. Artikel-Nr. 9783030744809

Verkäufer kontaktieren

Neu kaufen

EUR 192,59
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Akka Zemmari
ISBN 10: 3030744809 ISBN 13: 9783030744809
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems. The fundamentals of the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers a comprehensive preamble for further problem¿oriented chapters.The most interesting and open problems of machine learning in the framework of Deep Learning are discussed in this book and solutions are proposed. This book illustrates how to implement the zero-shot learning with Deep Neural Network Classifiers, which require a large amount of training data. The lack of annotated training data naturally pushes the researchers to implement low supervision algorithms. Metric learning is a long-term research but in the framework of Deep Learning approaches, it gets freshness and originality. Fine-grained classification with a low inter-class variability is a difficult problem for any classification tasks. This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks.Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Vision will want to buy this book. Advanced level students studying computer science within these topic areas will also find this book useful.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 328 pp. Englisch. Artikel-Nr. 9783030744809

Verkäufer kontaktieren

Neu kaufen

EUR 192,59
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Benois-Pineau, Jenny (Editor) / Zemmari, Akka (Editor)
Verlag: Springer, 2022
ISBN 10: 3030744809 ISBN 13: 9783030744809
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 328 pages. 9.25x6.10x0.83 inches. In Stock. Artikel-Nr. x-3030744809

Verkäufer kontaktieren

Neu kaufen

EUR 270,25
Währung umrechnen
Versand: EUR 11,49
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Benois-pineau, Jenny
Verlag: Springer, 2022
ISBN 10: 3030744809 ISBN 13: 9783030744809
Neu Softcover

Anbieter: Kennys Bookstore, Olney, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Artikel-Nr. V9783030744809

Verkäufer kontaktieren

Neu kaufen

EUR 319,62
Währung umrechnen
Versand: EUR 1,87
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 15 verfügbar

In den Warenkorb