Verwandte Artikel zu Multi-faceted Deep Learning: Models and Data

Multi-faceted Deep Learning: Models and Data - Softcover

 
9783030744793: Multi-faceted Deep Learning: Models and Data

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems. The fundamentals of  the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers  a comprehensive preamble for further  problem-oriented chapters. 

The most interesting and open problems of machine learning in the framework of  Deep Learning are discussed in this book and solutions are proposed.  This book illustrates how to implement the zero-shot learning with Deep Neural Network Classifiers, which require a large amount of training data. The lack of annotated training data naturally pushes the researchers to implement low supervision algorithms. Metric learning is a long-term research but in the framework of Deep Learning approaches, it gets freshness and originality. Fine-grained classification with a low inter-class variability is a difficult problem for any classification tasks.  This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks. 

Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Vision will want to buy this book. Advanced level students studying computer science within these topic areas will also find this book useful.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie kennen Autor und Titel des Buches und finden es trotzdem nicht auf ZVAB? Dann geben Sie einen Suchauftrag auf und wir informieren Sie automatisch, sobald das Buch verfügbar ist!

Kaufgesuch aufgeben

Weitere beliebte Ausgaben desselben Titels

9783030744779: Multi-faceted Deep Learning: Models and Data

Vorgestellte Ausgabe

ISBN 10:  3030744779 ISBN 13:  9783030744779
Verlag: Springer, 2021
Hardcover