Verwandte Artikel zu Data Mining Techniques in Sensor Networks: Summarization,...

Data Mining Techniques in Sensor Networks: Summarization, Interpolation and Surveillance (SpringerBriefs in Computer Science) - Softcover

 
9781447154532: Data Mining Techniques in Sensor Networks: Summarization, Interpolation and Surveillance (SpringerBriefs in Computer Science)

Inhaltsangabe

SENSOR NETWORKS COMPRISE OF A NUMBER OF SENSORS INSTALLED ACROSS A SPATIALLY DISTRIBUTED NETWORK, WHICH GATHER INFORMATION AND PERIODICALLY FEED A CENTRAL SERVER WITH THE MEASURED DATA. THE SERVER MONITORS THE DATA, ISSUES POSSIBLE ALARMS AND COMPUTES FAST AGGREGATES. AS DATA ANALYSIS REQUESTS MAY CONCERN BOTH PRESENT AND PAST DATA, THE SERVER IS FORCED TO STORE THE ENTIRE STREAM. BUT THE LIMITED STORAGE CAPACITY OF A SERVER MAY REDUCE THE AMOUNT OF DATA STORED ON THE DISK. ONE SOLUTION IS TO COMPUTE SUMMARIES OF THE DATA AS IT ARRIVES, AND TO USE THESE SUMMARIES TO INTERPOLATE THE REAL DATA. THIS WORK INTRODUCES A RECENTLY DEFINED SPATIO-TEMPORAL PATTERN, CALLED TREND CLUSTER, TO SUMMARIZE, INTERPOLATE AND IDENTIFY ANOMALIES IN A SENSOR NETWORK. AS AN EXAMPLE, THE APPLICATION OF TREND CLUSTER DISCOVERY TO MONITOR THE EFFICIENCY OF PHOTOVOLTAIC POWER PLANTS IS DISCUSSED. THE WORK CLOSES WITH REMARKS ON NEW POSSIBILITIES FOR SURVEILLANCE ENABLED BY RECENT DEVELOPMENTS IN SENSING TECHNOLOGY.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Sensor networks comprise of a number of sensors installed across a spatially distributed network, which gather information and periodically feed a central server with the measured data. The server monitors the data, issues possible alarms and computes fast aggregates. As data analysis requests may concern both present and past data, the server is forced to store the entire stream. But the limited storage capacity of a server may reduce the amount of data stored on the disk. One solution is to compute summaries of the data as it arrives, and to use these summaries to interpolate the real data. This work introduces a recently defined spatio-temporal pattern, called trend cluster, to summarize, interpolate and identify anomalies in a sensor network. As an example, the application of trend cluster discovery to monitor the efficiency of photovoltaic power plants is discussed. The work closes with remarks on new possibilities for surveillance enabled by recent developments in sensing technology.

Contraportada

Emerging real life applications, such as environmental compliance, ecological studies and meteorology, are characterized by real-time data acquisition through a number of (wireless) remote sensors. Operatively, remote sensors are installed across a spatially distributed network; they gather information along a number of attribute dimensions and periodically feed a central server with the measured data. The server is required to monitor these data, issue possible alarms or compute fast aggregates. As data analysis requests, which are submitted to a server, may concern both present and past data, the server is forced to store the entire stream. But, in the case of massive streams (large networks and/or frequent transmissions), the limited storage capacity of a server may impose to reduce the amount of data stored on the disk.  One solution to address the storage limits is to compute summaries of the data as they arrive and use these summaries to interpolate the real data which are discarded instead.  On any future demands of further analysis of the discarded data, the server pieces together the data from the summaries stored in database and processes them according to the requests.

This work introduces the multiple possibilities and facets of a recently defined spatio-temporal pattern, called trend cluster, and its applications to summarize, interpolate and identify anomalies in a sensor network.   As an example application, the authors illustrate the application of trend cluster discovery to monitor the efficiency of photovoltaic power plants. The work closes with remarks on new possibilities for surveillance gained by recent developments of sensing technology, and with an outline of future challenges.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2013
  • ISBN 10 1447154533
  • ISBN 13 9781447154532
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten120

Gebraucht kaufen

Zustand: Sehr gut
Zustand: Sehr gut - Buchschnitt...
Diesen Artikel anzeigen

EUR 45,00 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

EUR 14,07 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781447154549: Data Mining Techniques in Sensor Networks: Summarization, Interpolation and Surveillance (Springerbriefs in Computer Science)

Vorgestellte Ausgabe

ISBN 10:  1447154541 ISBN 13:  9781447154549
Verlag: Not Avail, 2014
Softcover

Suchergebnisse für Data Mining Techniques in Sensor Networks: Summarization,...

Beispielbild für diese ISBN

Appice, Annalisa; Ciampi, Anna; Fumarola, Fabio; Malerba, Donato
Verlag: Springer, 2013
ISBN 10: 1447154533 ISBN 13: 9781447154532
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781447154532_new

Verkäufer kontaktieren

Neu kaufen

EUR 59,91
Währung umrechnen
Versand: EUR 14,07
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Annalisa Appice, Donato Malerba, Fabio Fumarola, Anna Ciampi
Verlag: Springer London, 2013
ISBN 10: 1447154533 ISBN 13: 9781447154532
Gebraucht Softcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Sehr gut. Zustand: Sehr gut - Buchschnitt verkürzt - gepflegter, sauberer Zustand - Ausgabejahr 2014 | Seiten: 120 | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 24182073/12

Verkäufer kontaktieren

Gebraucht kaufen

EUR 39,68
Währung umrechnen
Versand: EUR 45,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Annalisa Appice
Verlag: Springer London, 2013
ISBN 10: 1447154533 ISBN 13: 9781447154532
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Sensor networks comprise of a number of sensors installed across a spatially distributed network, which gather information and periodically feed a central server with the measured data. The server monitors the data, issues possible alarms and computes fast aggregates. As data analysis requests may concern both present and past data, the server is forced to store the entire stream. But the limited storage capacity of a server may reduce the amount of data stored on the disk. One solution is to compute summaries of the data as it arrives, and to use these summaries to interpolate the real data. This work introduces a recently defined spatio-temporal pattern, called trend cluster, to summarize, interpolate and identify anomalies in a sensor network. As an example, the application of trend cluster discovery to monitor the efficiency of photovoltaic power plants is discussed. The work closes with remarks on new possibilities for surveillance enabled by recent developments in sensing technology. Artikel-Nr. 9781447154532

Verkäufer kontaktieren

Neu kaufen

EUR 56,98
Währung umrechnen
Versand: EUR 28,97
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb