This volume develops an effective theory approach to understanding deep neural networks of practical relevance.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Daniel A. Roberts was cofounder and CTO of Diffeo, an AI company acquired by Salesforce; a research scientist at Facebook AI Research; and a member of the School of Natural Sciences at the Institute for Advanced Study in Princeton, NJ. He was a Hertz Fellow, earning a PhD from MIT in theoretical physics, and was also a Marshall Scholar at Cambridge and Oxford Universities.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: BooksRun, Philadelphia, PA, USA
Hardcover. Zustand: Very Good. New. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. Artikel-Nr. 1316519333-8-1
Anzahl: 1 verfügbar
Anbieter: medimops, Berlin, Deutschland
Zustand: as new. Wie neu/Like new. Artikel-Nr. M01316519333-N
Anzahl: 1 verfügbar
Anbieter: Speedyhen, Hertfordshire, Vereinigtes Königreich
Zustand: NEW. Artikel-Nr. NW9781316519332
Anzahl: 2 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2022. New. Hardcover. . . . . . Books ship from the US and Ireland. Artikel-Nr. V9781316519332
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. This is the first book focused entirely on deep learning theory. Tools from theoretical physics are borrowed and adapted to explain, from first principles, how realistic deep neural networks work, benefiting practitioners looking to build better AI models a. Artikel-Nr. 541489311
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 390 pages. 10.00x7.00x1.00 inches. In Stock. Artikel-Nr. x-1316519333
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook establishes a theoretical framework for understanding deep learning models of practical relevance. With an approach that borrows from theoretical physics, Roberts and Yaida provide clear and pedagogical explanations of how realistic deep neural networks actually work. To make results from the theoretical forefront accessible, the authors eschew the subject's traditional emphasis on intimidating formality without sacrificing accuracy. Straightforward and approachable, this volume balances detailed first-principle derivations of novel results with insight and intuition for theorists and practitioners alike. This self-contained textbook is ideal for students and researchers interested in artificial intelligence with minimal prerequisites of linear algebra, calculus, and informal probability theory, and it can easily fill a semester-long course on deep learning theory. For the first time, the exciting practical advances in modern artificial intelligence capabilities can be matched with a set of effective principles, providing a timeless blueprint for theoretical research in deep learning. Artikel-Nr. 9781316519332
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. The Principles of Deep Learning Theory | Daniel A. Roberts (u. a.) | Buch | Gebunden | Englisch | 2022 | Cambridge University Press | EAN 9781316519332 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu. Artikel-Nr. 120952167
Anzahl: 1 verfügbar