Decision-making in the face of uncertainty is a significant challenge in machine learning, and the multi-armed bandit model is a commonly used framework to address it. This comprehensive and rigorous introduction to the multi-armed bandit problem examines all the major settings, including stochastic, adversarial, and Bayesian frameworks. A focus on both mathematical intuition and carefully worked proofs makes this an excellent reference for established researchers and a helpful resource for graduate students in computer science, engineering, statistics, applied mathematics and economics. Linear bandits receive special attention as one of the most useful models in applications, while other chapters are dedicated to combinatorial bandits, ranking, non-stationary problems, Thompson sampling and pure exploration. The book ends with a peek into the world beyond bandits with an introduction to partial monitoring and learning in Markov decision processes.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Tor Lattimore is a research scientist at DeepMind. His research is focused on decision making in the face of uncertainty, including bandit algorithms and reinforcement learning. Before joining DeepMind he was an assistant professor at Indiana University and a postdoctoral fellow at the University of Alberta.
Csaba Szepesvári is a Professor in the Department of Computing Science at the University of Alberta and a Principal Investigator of the Alberta Machine Intelligence Institute. He also leads the 'Foundations' team at DeepMind. He has co-authored a book on nonlinear approximate adaptive controllers and authored a book on reinforcement learning, in addition to publishing over 200 journal and conference papers. He is an action editor of the Journal of Machine Learning Research.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: BooksRun, Philadelphia, PA, USA
Hardcover. Zustand: Good. 1. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience. Artikel-Nr. 1108486827-11-1
Anbieter: Books From California, Simi Valley, CA, USA
hardcover. Zustand: Very Good. Cover and edges may have some wear. Artikel-Nr. mon0003875466
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2020. Hardcover. . . . . . Books ship from the US and Ireland. Artikel-Nr. V9781108486828
Anbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Artikel-Nr. NW9781108486828
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 517 pages. 9.50x7.00x1.25 inches. In Stock. Artikel-Nr. x-1108486827
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Decision-making in the face of uncertainty is a challenge in machine learning, and the multi-armed bandit model is a common framework to address it. This comprehensive introduction is an excellent reference for established researchers and a resource for gra. Artikel-Nr. 343725629
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
hardcover. Zustand: Neu. Neu Neuware, Importqualität, auf Lager. Artikel-Nr. INF1000671728
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. Bandit Algorithms | Tor Lattimore (u. a.) | Buch | Gebunden | Englisch | 2020 | Cambridge University Press | EAN 9781108486828 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu. Artikel-Nr. 121058560
Anzahl: 1 verfügbar