Verwandte Artikel zu Symmetries of Spacetimes and Riemannian Manifolds:...

Symmetries of Spacetimes and Riemannian Manifolds: 487 (Mathematics and Its Applications) - Hardcover

 
9780792357933: Symmetries of Spacetimes and Riemannian Manifolds: 487 (Mathematics and Its Applications)

Inhaltsangabe

This book provides an upto date information on metric, connection and curva­ ture symmetries used in geometry and physics. More specifically, we present the characterizations and classifications of Riemannian and Lorentzian manifolds (in particular, the spacetimes of general relativity) admitting metric (i.e., Killing, ho­ mothetic and conformal), connection (i.e., affine conformal and projective) and curvature symmetries. Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of a comprehensive collection of the works of a very large number of researchers on all the above mentioned symmetries. (b) We have aimed at bringing together the researchers interested in differential geometry and the mathematical physics of general relativity by giving an invariant as well as the index form of the main formulas and results. (c) Attempt has been made to support several main mathematical results by citing physical example(s) as applied to general relativity. (d) Overall the presentation is self contained, fairly accessible and in some special cases supported by an extensive list of cited references. (e) The material covered should stimulate future research on symmetries. Chapters 1 and 2 contain most of the prerequisites for reading the rest of the book. We present the language of semi-Euclidean spaces, manifolds, their tensor calculus; geometry of null curves, non-degenerate and degenerate (light like) hypersurfaces. All this is described in invariant as well as the index form.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This book provides an upto date information on metric, connection and curva­ ture symmetries used in geometry and physics. More specifically, we present the characterizations and classifications of Riemannian and Lorentzian manifolds (in particular, the spacetimes of general relativity) admitting metric (i.e., Killing, ho­ mothetic and conformal), connection (i.e., affine conformal and projective) and curvature symmetries. Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of a comprehensive collection of the works of a very large number of researchers on all the above mentioned symmetries. (b) We have aimed at bringing together the researchers interested in differential geometry and the mathematical physics of general relativity by giving an invariant as well as the index form of the main formulas and results. (c) Attempt has been made to support several main mathematical results by citing physical example(s) as applied to general relativity. (d) Overall the presentation is self contained, fairly accessible and in some special cases supported by an extensive list of cited references. (e) The material covered should stimulate future research on symmetries. Chapters 1 and 2 contain most of the prerequisites for reading the rest of the book. We present the language of semi-Euclidean spaces, manifolds, their tensor calculus; geometry of null curves, non-degenerate and degenerate (light like) hypersurfaces. All this is described in invariant as well as the index form.

Reseña del editor

This book provides up-to-date information on metric (i.e. Killing, homothetic and conformal), connection (i.e. affine, conformal and projective), curvature collineations and curvature inheritance symmetries. It is the first-ever attempt to present a comprehensive account of a very large number of papers on symmetries of spacetimes and Riemannian manifolds. An attempt has been made to present the Lie group/algebra structures of symmetry vectors, their kinematics/dynamics, compact hypersurfaces (dealing with the initial value problem in general relativity) and lightlike hypersurfaces. This book also contains the latest information on symmetries of Kaehler, contact and globally framed manifolds.
Audience: Graduate students, post-doctoral students and faculty interested in differential geometry and/or general relativity.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 13,80 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781461374251: Symmetries of Spacetimes and Riemannian Manifolds: 487 (Mathematics and Its Applications)

Vorgestellte Ausgabe

ISBN 10:  1461374251 ISBN 13:  9781461374251
Verlag: Springer, 2013
Softcover

Suchergebnisse für Symmetries of Spacetimes and Riemannian Manifolds:...

Beispielbild für diese ISBN

Duggal, Krishan L.; Sharma, Ramesh
Verlag: Springer, 1999
ISBN 10: 0792357930 ISBN 13: 9780792357933
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780792357933_new

Verkäufer kontaktieren

Neu kaufen

EUR 58,27
Währung umrechnen
Versand: EUR 13,80
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Krishan L. Duggal|Ramesh Sharma
Verlag: Springer US, 1999
ISBN 10: 0792357930 ISBN 13: 9780792357933
Neu Hardcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Gebunden. Zustand: New. Artikel-Nr. 458440561

Verkäufer kontaktieren

Neu kaufen

EUR 61,93
Währung umrechnen
Versand: EUR 48,99
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Krishan L Duggal
Verlag: Springer Us Jun 1999, 1999
ISBN 10: 0792357930 ISBN 13: 9780792357933
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware - This book provides an upto date information on metric, connection and curva ture symmetries used in geometry and physics. More specifically, we present the characterizations and classifications of Riemannian and Lorentzian manifolds (in particular, the spacetimes of general relativity) admitting metric (i.e., Killing, ho mothetic and conformal), connection (i.e., affine conformal and projective) and curvature symmetries. Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of a comprehensive collection of the works of a very large number of researchers on all the above mentioned symmetries. (b) We have aimed at bringing together the researchers interested in differential geometry and the mathematical physics of general relativity by giving an invariant as well as the index form of the main formulas and results. (c) Attempt has been made to support several main mathematical results by citing physical example(s) as applied to general relativity. (d) Overall the presentation is self contained, fairly accessible and in some special cases supported by an extensive list of cited references. (e) The material covered should stimulate future research on symmetries. Chapters 1 and 2 contain most of the prerequisites for reading the rest of the book. We present the language of semi-Euclidean spaces, manifolds, their tensor calculus; geometry of null curves, non-degenerate and degenerate (light like) hypersurfaces. All this is described in invariant as well as the index form. Artikel-Nr. 9780792357933

Verkäufer kontaktieren

Neu kaufen

EUR 81,97
Währung umrechnen
Versand: EUR 62,52
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb