Search preferences
Direkt zu den wichtigsten Suchergebnissen

Suchfilter

Produktart

  • Alle Product Types 
  • Bücher (1)
  • Magazine & Zeitschriften (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Comics (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Noten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Kunst, Grafik & Poster (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Fotografien (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Karten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Manuskripte & Papierantiquitäten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)

Zustand

  • Alle 
  • Neu (1)
  • Antiquarisch (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)

Einband

Weitere Eigenschaften

  • Erstausgabe (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Signiert (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Schutzumschlag (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Angebotsfoto (1)

Sprache (1)

Preis

  • Beliebiger Preis 
  • Weniger als EUR 20 (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • EUR 20 bis EUR 45 (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Mehr als EUR 45 
Benutzerdefinierte Preisspanne (EUR)

Land des Verkäufers

  • Francisco Javier Molina Lopez

    Verlag: LAP LAMBERT Academic Publishing Feb 2010, 2010

    ISBN 10: 3838347943 ISBN 13: 9783838347943

    Sprache: Englisch

    Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    Kostenlos für den Versand innerhalb von/der Deutschland

    Versandziele, Kosten & Dauer

    Anzahl: 2 verfügbar

    In den Warenkorb

    Taschenbuch. Zustand: Neu. Neuware -In the context of medical diagnostics, an important problem is to find the genes that are correlated with given phenotypes. These genes may reveal insights to biological processes and may be used to predict the phenotypes associated to samples of RNA. To that end, two new clustering methods are presented and studied. Our first algorithm allows us to analyze cell evolution by observing how the state of every gene changes over time. Our second algorithm cluster genes whose expression profiles are similar by using a classification of the samples utilized in the microarray experiments. This classification is based upon one or more conditions that affect the composition of the samples analyzed. By using the label of the microarray experiments,extra information is provided to cluster genes. The research reported here on the first two algorithms presented consists of three parts: 1. testing our methods on artificial datasets sampled from the probabilistic models on which our methods are based, 2. using our methods on microarray expression datasets to cluster genes, 3. and comparing results from parts 1 and 2 with the results obtained by other clustering methods on the same datasets.Books on Demand GmbH, Überseering 33, 22297 Hamburg 96 pp. Englisch.