Anbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland
EUR 20,00
Währung umrechnenAnzahl: 8 verfügbar
In den WarenkorbXXVII, 554 p. Softcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Operations Research / Computer Science Interfaces Series, 25. Sprache: Englisch.
Anbieter: ThriftBooks-Atlanta, AUSTELL, GA, USA
EUR 52,47
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: As New. No Jacket. Pages are clean and are not marred by notes or folds of any kind. ~ ThriftBooks: Read More, Spend Less.
Anbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland
EUR 32,00
Währung umrechnenAnzahl: 1 verfügbar
In den Warenkorb2003th ed. 16 x 23 cm. 554 pages. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch.
Anbieter: ThriftBooks-Dallas, Dallas, TX, USA
EUR 69,99
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Very Good. No Jacket. Missing dust jacket; May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 123,51
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 159,10
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In English.
Anbieter: preigu, Osnabrück, Deutschland
EUR 110,95
Währung umrechnenAnzahl: 5 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Simulation-Based Optimization | Parametric Optimization Techniques and Reinforcement Learning | Abhijit Gosavi | Taschenbuch | xxvi | Englisch | 2016 | Springer US | EAN 9781489977311 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 182,14
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 2nd reprint edition. 534 pages. 9.25x6.10x1.18 inches. In Stock.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 132,72
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques - especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms.Key features of this revised and improved Second Edition include: Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming(value and policy iteration) for discounted, average, and total reward performance metrics An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential EquationsThemed around three areas in separate sets of chapters - Static Simulation Optimization, Reinforcement Learning and Convergence Analysis - this book is written for researchers and students in the fields of engineering (industrial, systems,electrical and computer), operations research, computer science and applied mathematics.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 187,59
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbBuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques - especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms.Key features of this revised and improved Second Edition include: Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming(value and policy iteration) for discounted, average, and total reward performance metrics An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential EquationsThemed around three areas in separate sets of chapters - Static Simulation Optimization, Reinforcement Learning and Convergence Analysis - this book is written for researchers and students in the fields of engineering (industrial, systems,electrical and computer), operations research, computer science and applied mathematics.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 307,63
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 584 pages. 9.29x6.06x1.34 inches. In Stock.