Zustand: Bueno. : Este libro, escrito por Joaquim Anto?nio dos Santos Gromicho, explora la optimización cuasiconvexa y la teoría de la localización. Originalmente presentada como la tesis doctoral del autor en Rotterdam en 1995, esta obra incluye referencias bibliográficas y un resumen en neerlandés. El libro forma parte de la serie de investigación del Instituto Tinbergen, número 90, y aborda temas de programación convexa y funciones convexas, siendo relevante para estudiantes y profesionales en el campo de la investigación operativa y la optimización matemática. EAN: 9789051703214 Tipo: Libros Categoría: Tecnología|Ciencias Título: Quasiconvex Optimization and Location Theory Autor: Joaquim Anto?nio dos Santos Gromicho Editorial: Thesis Pub Idioma: en Páginas: 196 Formato: tapa blanda.
Anbieter: Kloof Booksellers & Scientia Verlag, Amsterdam, Niederlande
Zustand: very good. Amsterdam: Thesis,1995. Paperback. xvi,196p. Diss. (Tinbergen Institute Research Series 90). Library stamp. Condition : very good copy. ISBN 9789051703214. Keywords : ECONOMICS, statistics.
Verlag: Thesis Publishers, Amsterdam, 1995
ISBN 10: 905170321X ISBN 13: 9789051703214
Sprache: Englisch
Anbieter: Barksdale Books, Almere, Niederlande
Zustand: Good. Dissertatie.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 110,24
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 110,24
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
EUR 92,27
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 151,18
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. reprint edition. 240 pages. 9.45x6.30x0.55 inches. In Stock.
Taschenbuch. Zustand: Neu. Quasiconvex Optimization and Location Theory | J. A. dos Santos Gromicho | Taschenbuch | xxii | Englisch | 2011 | Springer US | EAN 9781461333289 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
EUR 118,64
Anzahl: Mehr als 20 verfügbar
In den WarenkorbGebunden. Zustand: New.
Verlag: Springer US, Springer New York, 2011
ISBN 10: 1461333288 ISBN 13: 9781461333289
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - grams of which the objective is given by the ratio of a convex by a positive (over a convex domain) concave function. As observed by Sniedovich (Ref. [102, 103]) most of the properties of fractional pro grams could be found in other programs, given that the objective function could be written as a particular composition of functions. He called this new field C programming, standing for composite concave programming. In his seminal book on dynamic programming (Ref. [104]), Sniedovich shows how the study of such com positions can help tackling non-separable dynamic programs that otherwise would defeat solution. Barros and Frenk (Ref. [9]) developed a cutting plane algorithm capable of optimizing C-programs. More recently, this algorithm has been used by Carrizosa and Plastria to solve a global optimization problem in facility location (Ref. [16]). The distinction between global optimization problems (Ref. [54]) and generalized convex problems can sometimes be hard to establish. That is exactly the reason why so much effort has been placed into finding an exhaustive classification of the different weak forms of convexity, establishing a new definition just to satisfy some desirable property in the most general way possible. This book does not aim at all the subtleties of the different generalizations of convexity, but concentrates on the most general of them all, quasiconvex programming. Chapter 5 shows clearly where the real difficulties appear.
Zustand: Gut. Zustand: Gut | Sprache: Englisch | Produktart: Bücher.
Buch. Zustand: Neu. Neuware - grams of which the objective is given by the ratio of a convex by a positive (over a convex domain) concave function. As observed by Sniedovich (Ref. [102, 103]) most of the properties of fractional pro grams could be found in other programs, given that the objective function could be written as a particular composition of functions. He called this new field C programming, standing for composite concave programming. In his seminal book on dynamic programming (Ref. [104]), Sniedovich shows how the study of such com positions can help tackling non-separable dynamic programs that otherwise would defeat solution. Barros and Frenk (Ref. [9]) developed a cutting plane algorithm capable of optimizing C-programs. More recently, this algorithm has been used by Carrizosa and Plastria to solve a global optimization problem in facility location (Ref. [16]). The distinction between global optimization problems (Ref. [54]) and generalized convex problems can sometimes be hard to establish. That is exactly the reason why so much effort has been placed into finding an exhaustive classification of the different weak forms of convexity, establishing a new definition just to satisfy some desirable property in the most general way possible. This book does not aim at all the subtleties of the different generalizations of convexity, but concentrates on the most general of them all, quasiconvex programming. Chapter 5 shows clearly where the real difficulties appear.
Erasmus Univ. 1995 sewed, 196 pp. Thesis with Stellingen Perfect copy (code Sc-52).