Zustand: good. Gently used with minimal wear on the corners and cover. A few pages may contain light highlighting or writing, but the text remains fully legible. Dust jacket may be missing, and supplemental materials like CDs or codes may not be included. May be ex-library with library markings. Ships promptly!
Sprache: Englisch
Verlag: Packt Publishing, Limited, 2015
ISBN 10: 1783555130 ISBN 13: 9781783555130
Anbieter: Better World Books, Mishawaka, IN, USA
Zustand: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects.
Sprache: Englisch
Verlag: Packt Publishing, Limited, 2015
ISBN 10: 1783555130 ISBN 13: 9781783555130
Anbieter: Better World Books, Mishawaka, IN, USA
Zustand: Good. Used book that is in clean, average condition without any missing pages.
Sprache: Englisch
Verlag: Packt Publishing Limited, United Kingdom, Birmingham, 2023
ISBN 10: 1787125939 ISBN 13: 9781787125933
Anbieter: WorldofBooks, Goring-By-Sea, WS, Vereinigtes Königreich
EUR 9,22
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Very Good. Unlock modern machine learning and deep learning techniques with Python by using the latest cutting-edge open source Python libraries. About This Book Second edition of the bestselling book on Machine Learning A practical approach to key frameworks in data science, machine learning, and deep learning Use the most powerful Python libraries to implement machine learning and deep learning Get to know the best practices to improve and optimize your machine learning systems and algorithms Who This Book Is For If you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential and unmissable resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for developers and data scientists who want to teach computers how to learn from data. What You Will Learn Understand the key frameworks in data science, machine learning, and deep learning Harness the power of the latest Python open source libraries in machine learning Explore machine learning techniques using challenging real-world data Master deep neural network implementation using the TensorFlow library Learn the mechanics of classification algorithms to implement the best tool for the job Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Delve deeper into textual and social media data using sentiment analysis In Detail Machine learning is eating the software world, and now deep learning is extending machine learning. Understand and work at the cutting edge of machine learning, neural networks, and deep learning with this second edition of Sebastian Raschka's bestselling book, Python Machine Learning. Thoroughly updated using the latest Python open source libraries, this book offers the practical knowledge and techniques you need to create and contribute to machine learning, deep learning, and modern data analysis. Fully extended and modernized, Python Machine Learning Second Edition now includes the popular TensorFlow deep learning library. The scikit-learn code has also been fully updated to include recent improvements and additions to this versatile machine learning library. Sebastian Raschka and Vahid Mirjalili's unique insight and expertise introduce you to machine learning and deep learning algorithms from scratch, and show you how to apply them to practical industry challenges using realistic and interesting examples. By the end of the book, you'll be ready to meet the new data analysis opportunities in today's world. If you've read the first edition of this book, you'll be delighted to find a new balance of classical ideas and modern insights into machine learning. Every chapter has been critically updated, and there are new chapters on key technologies. You'll be able to learn and work with TensorFlow more deeply than ever before, and get essential coverage of the Keras neural network library, along with the most recent updates to scikit-learn. Style and Approach Python Machine Learning Second Edition takes a practical, hands-on coding approach so you can learn about machine learning by coding with Python. This book moves fluently between the theoretical principles of machine learning and the practical details of implementation with Python. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged.
Sprache: Englisch
Verlag: Packt Publishing Limited, United Kingdom, Birmingham, 2023
ISBN 10: 1783555130 ISBN 13: 9781783555130
Anbieter: WorldofBooks, Goring-By-Sea, WS, Vereinigtes Königreich
EUR 14,20
Anzahl: 3 verfügbar
In den WarenkorbPaperback. Zustand: Very Good. Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask and answer tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged.
Sprache: Englisch
Verlag: Packt Publishing, Limited, 2019
ISBN 10: 1789955750 ISBN 13: 9781789955750
Anbieter: Better World Books: West, Reno, NV, USA
Zustand: Good. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages.
Sprache: Englisch
Verlag: Packt Publishing, Limited, 2019
ISBN 10: 1789955750 ISBN 13: 9781789955750
Anbieter: Better World Books, Mishawaka, IN, USA
Zustand: Good. Used book that is in clean, average condition without any missing pages.
Paperback. Zustand: Good.
paperback. Zustand: As New. 2nd ed. This book is in near-perfect condition, showing minimal signs of use. It has clean, crisp pages with no markings or highlighting, and the spine and cover are intact without any creases or wear. This book appears as if it has been barely touched and is virtually indistinguishable from a brand new book. This book may be an ex-library item. Textbooks may not include supplemental items i.e. CDs, access codes etc.
paperback. Zustand: Very Good. Condition Notes: Clean, unmarked copy with some edge wear. Good binding. Dust jacket included if issued with one. We ship in recyclable American-made mailers. 100% money-back guarantee on all orders.
paperback. Zustand: Near Fine. Condition Notes: Excellent, unmarked copy with little wear and tight binding. We ship in recyclable American-made mailers. 100% money-back guarantee on all orders.
Zustand: acceptable. This copy has clearly been enjoyedâ"expect noticeable shelf wear and some minor creases to the cover. Binding is strong, and all pages are legible. May contain previous library markings or stamps.
Sprache: Englisch
Verlag: Packt Publishing (edition 3rd ed.), 2019
ISBN 10: 1789955750 ISBN 13: 9781789955750
Anbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: Very Good. 3rd ed. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting.
paperback. Zustand: Very Good. Condition Notes: Clean, unmarked copy with some edge wear. Good binding. Dust jacket included if issued with one. We ship in recyclable American-made mailers. 100% money-back guarantee on all orders.
Sprache: Englisch
Verlag: Packt Publishing (edition ), 2022
ISBN 10: 1801819319 ISBN 13: 9781801819312
Anbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: Very Good. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting.
Sprache: Englisch
Verlag: Packt Publishing, United Kingdom, 2019
ISBN 10: 1789955750 ISBN 13: 9781789955750
Paperback. Zustand: Very Good+. Third Edition. 741 pages; Very Good condition. No noteworthy defects. No markings. ; - Your satisfaction is our priority. We offer free returns and respond promptly to all inquiries. Your item will be carefully cushioned in bubble wrap and securely boxed. All orders ship on the same or next business day. Buy with confidence.
Anbieter: Bookbot, Prague, Tschechien
Softcover. Zustand: Fair. Wasserschaden / Verschmutzung; Leichte Abnutzungen. Many of the most innovative breakthroughs and exciting new technologies can be attributed to applications of machine learning. We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services - machine learning makes it all possible. Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively. This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results. You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world.
Anbieter: Mooney's bookstore, Den Helder, Niederlande
Zustand: Very good.
ESTADO: BUENO. Libro en buen estado con marcas de uso.
Zustand: New. Idioma/Language: Español. El aprendizaje automático está invadiendo el mundo del software. Si quieres entender y trabajar la vanguardia del aprendizaje automático, las redes neuronales y el aprendizaje profundo, esta segunda edición del bestseller Python Machine Learning, es tu libro. Modernizado y ampliado para incluir las tecnologías de código abierto más recientes, como scikit-learn, Keras y TensorFlow, este manual proporciona el conocimiento práctico y las técnicas necesarias para crear eficaces aplicaciones de aprendizaje automático y aprendizaje profundo en Python. El conocimiento y la experiencia únicos de Sebastian Raschka y Vahid Mirjalili presentan los algoritmos de aprendizaje automático y aprendizaje profundo, antes de continuar con temas avanzados en análisis de datos. Combinan los principios teóricos delaprendizaje automático con un enfoque práctico de codificación para una comprensión completa de la teoría del aprendizaje automático y la implementación con Python. Aprenderás a:Explorar y entender los frameworks clave para la ciencia de datos, el aprendizaje automático y el aprendizaje profundoFormular nuevas preguntas sobre datos con modelos deaprendizaje automático y redes neuronalesAprovechar el poder de las últimas libreríasde código abierto de Python para aprendizaje automáticoDominar la implementación de redes neuronales profundas con la librería de TensorFlowIncrustar modelos de aprendizaje automáticos en aplicacions web accesiblesPredecir resultados objetivos continuos con análisis de regresiónDescubrir patrones ocultos y estructuras en datos con agrupamientosAnalizar imágenes mediante técnicas de aprendizaje profundoProfundizar en datos de medios sociales y textuales con el análisis de sentimientos 4 *** Nota: Los envíos a España peninsular, Baleares y Canarias se realizan a través de mensajería urgente. No aceptamos pedidos con destino a Ceuta y Melilla.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 28,27
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. German language. 9.37x6.73x1.65 inches. In Stock.
EUR 50,61
Anzahl: 2 verfügbar
In den WarenkorbZustand: NEW.
EUR 48,76
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Über den AutorSebastian Raschka is an Assistant Professor of Statistics at the University of Wisconsin-Madison focusing on machine learning and deep learning research. Some of his recent research methods have been applied to solving.
Anbieter: Mooney's bookstore, Den Helder, Niederlande
Zustand: Very good.
Anbieter: medimops, Berlin, Deutschland
Zustand: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present.
Zustand: New.
Zustand: NEW.
Sprache: Deutsch
Verlag: MITP Verlags Gmbh Mär 2021, 2021
ISBN 10: 374750213X ISBN 13: 9783747502136
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Mit diesem Buch erhalten Sie eine umfassende Einführung in die Grundlagen und den effektiven Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür setzen Sie ein breites Spektrum leistungsfähiger Python-Bibliotheken ein, insbesondere Keras, TensorFlow 2 und Scikit-learn. Auch die für die praktische Anwendung unverzichtbaren mathematischen Konzepte werden verständlich und anhand zahlreicher Diagramme anschaulich erläutert.MITP Verlags GmbH, Augustinusstraße 9a, 50226 Frechen 768 pp. Deutsch.
Taschenbuch. Zustand: Neu. Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn | Das umfassende Praxis-Handbuch für Data Science, Deep Learning und Predictive Analytics | Sebastian Raschka (u. a.) | Taschenbuch | mitp Professional | 768 S. | Deutsch | 2021 | MITP Verlags GmbH | EAN 9783747502136 | Verantwortliche Person für die EU: mitp Verlags GmbH & Co. KG, Steffen Dralle, Augustinusstr. 9a, 50226 Frechen, steffen[dot]dralle[at]mitp[dot]de | Anbieter: preigu.
Sprache: Deutsch
Verlag: MITP Verlags Gmbh Mär 2021, 2021
ISBN 10: 374750213X ISBN 13: 9783747502136
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Datenanalyse mit ausgereiften statistischen Modellen des Machine LearningsAnwendung der wichtigsten Algorithmen und Python-Bibliotheken wie NumPy, SciPy, Scikit-learn, Keras, TensorFlow 2, Pandas und MatplotlibBest Practices zur Optimierung Ihrer Machine-Learning-AlgorithmenMit diesem Buch erhalten Sie eine umfassende Einführung in die Grundlagen und den effektiven Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür setzen Sie ein breites Spektrum leistungsfähiger Python-Bibliotheken ein, insbesondere Keras, TensorFlow 2 und Scikit-learn. Auch die für die praktische Anwendung unverzichtbaren mathematischen Konzepte werden verständlich und anhand zahlreicher Diagramme anschaulich erläutert.Die dritte Auflage dieses Buchs wurde für TensorFlow 2 komplett aktualisiert und berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig sind. Dazu zählen insbesondere die neuen Features der Keras-API, das Synthetisieren neuer Daten mit Generative Adversarial Networks (GANs) sowie die Entscheidungsfindung per Reinforcement Learning.Ein sicherer Umgang mit Python wird vorausgesetzt.Aus dem Inhalt:Trainieren von Lernalgorithmen und Implementierung in PythonGängige Klassifikationsalgorithmen wie Support Vector Machines (SVM), Entscheidungsbäume und Random ForestNatural Language Processing zur Klassifizierung von FilmbewertungenClusteranalyse zum Auffinden verborgener Muster und Strukturen in Ihren DatenDeep-Learning-Verfahren für die BilderkennungDatenkomprimierung durch DimensionsreduktionTraining Neuronaler Netze und GANs mit TensorFlow 2Kombination verschiedener Modelle für das Ensemble LearningEinbettung von Machine-Learning-Modellen in WebanwendungenStimmungsanalyse in Social NetworksModellierung sequenzieller Daten durch rekurrente Neuronale NetzeReinforcement Learning und Implementierung von Q-Learning-Algorithmen.