Sprache: Englisch
Verlag: No Starch Press (edition ), 2022
ISBN 10: 1718502206 ISBN 13: 9781718502208
Anbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: Fair. The item might be beaten up but readable. May contain markings or highlighting, as well as stains, bent corners, or any other major defect, but the text is not obscured in any way.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 49,87
Anzahl: 1 verfügbar
In den WarenkorbZustand: New.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 51,93
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 180 pages. 9.25x7.00x0.79 inches. In Stock.
Zustand: New. 2022. Paperback. . . . . . Books ship from the US and Ireland.
Taschenbuch. Zustand: Neu. Python for Data Science | A Hands-On Introduction | Yuli Vasiliev | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2022 | Random House LLC US | EAN 9781718502208 | Verantwortliche Person für die EU: Springer Fachmedien Wiesbaden GmbH, Postfach:15 46, 65189 Wiesbaden, info[at]bod[dot]de | Anbieter: preigu.
Sprache: Englisch
Verlag: Random House LLC US Aug 2022, 2022
ISBN 10: 1718502206 ISBN 13: 9781718502208
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - A hands-on, real-world introduction to data analysis with the Python programming language, loaded with wide-ranging examples.Python is an ideal choice for accessing, manipulating, and gaining insights from data of all kinds. Python for Data Science introduces you to the Pythonic world of data analysis with a learn-by-doing approach rooted in practical examples and hands-on activities. You ll learn how to write Python code to obtain, transform, and analyze data, practicing state-of-the-art data processing techniques for use cases in business management, marketing, and decision support.You will discover Python s rich set of built-in data structures for basic operations, as well as its robust ecosystem of open-source libraries for data science, including NumPy, pandas, scikit-learn, matplotlib, and more. Examples show how to load data in various formats, how to streamline, group, and aggregate data sets, and how to create charts, maps, and other visualizations. Later chapters go in-depth with demonstrations of real-world data applications, including using location data to power a taxi service, market basket analysis to identify items commonly purchased together, and machine learning to predict stock prices.