Verlag: Peter Lang GmbH, Internationaler Verlag der Wissenschaften, 2015
ISBN 10: 3631667256 ISBN 13: 9783631667255
Sprache: Englisch
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 39,46
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Peter Lang, Peter Lang Dez 2015, 2015
ISBN 10: 3631667256 ISBN 13: 9783631667255
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
EUR 44,25
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbBuch. Zustand: Neu. Neuware -The book investigates the ontology and logic of quantum physics. The first part discusses the relationship of theory and observation and different views on the ontological status of scientific theories. It introduces the fundamentals of quantum mechanics and some of its interpretations and their compatibility with various ontological positions. In the second part, implications of quantum mechanics on classical logic, especially on the distributive law and bivalence, as discussed by Garrett Birkhoff & John von Neumann (1936) and Hilary Putnam (1968), and their counterarguments are reconstructed and discussed. It is concluded that classical logic is sufficient for dealing with quantum mechanical propositions. 136 pp. Englisch.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 44,25
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbBuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The book investigates the ontology and logic of quantum physics. The first part discusses the relationship of theory and observation and different views on the ontological status of scientific theories. It introduces the fundamentals of quantum mechanics and some of its interpretations and their compatibility with various ontological positions. In the second part, implications of quantum mechanics on classical logic, especially on the distributive law and bivalence, as discussed by Garrett Birkhoff & John von Neumann (1936) and Hilary Putnam (1968), and their counterarguments are reconstructed and discussed. It is concluded that classical logic is sufficient for dealing with quantum mechanical propositions.