Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 158,80
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 158,80
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Springer Netherlands, Springer Netherlands Jan 2011, 2011
ISBN 10: 9048157153 ISBN 13: 9789048157150
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
EUR 160,49
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Neuware -The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia and curvature nonlin earities and the parametric excitation on the spatial distribution of the deflection is examined. The results are compared with those obtained by using a single-mode discretization. In the absence of linear viscous and quadratic damping, it is shown that there are nonlinear normal modes, as defined by Rosenberg, even in the presence of a principal parametric excitation. Furthermore, the nonlinear mode shape obtained with the direct approach is compared with that obtained with the discretization approach for some values of the excitation frequency. In the single-mode discretization, the spatial distribution of the deflection is assumed a priori to be given by the linear mode shape ¢n, which is parametrically excited, as Equation (41). Thus, the mode shape is not influenced by the nonlinear curvature and nonlinear damping. On the other hand, in the direct approach, the mode shape is not assumed a priori; the nonlinear effects modify the linear mode shape ¢n. Therefore, in the case of large-amplitude oscillations, the single-mode discretization may yield inaccurate mode shapes. References 1. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. v., Pilipchuk, V. N., and Zevin A. A., Nonnal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 300 pp. Englisch.
EUR 175,87
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbGebunden. Zustand: New. The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia a.
Verlag: Springer Netherlands, Springer Netherlands, 2011
ISBN 10: 9048157153 ISBN 13: 9789048157150
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 164,49
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia and curvature nonlin earities and the parametric excitation on the spatial distribution of the deflection is examined. The results are compared with those obtained by using a single-mode discretization. In the absence of linear viscous and quadratic damping, it is shown that there are nonlinear normal modes, as defined by Rosenberg, even in the presence of a principal parametric excitation. Furthermore, the nonlinear mode shape obtained with the direct approach is compared with that obtained with the discretization approach for some values of the excitation frequency. In the single-mode discretization, the spatial distribution of the deflection is assumed a priori to be given by the linear mode shape Ct. n, which is parametrically excited, as Equation (41). Thus, the mode shape is not influenced by the nonlinear curvature and nonlinear damping. On the other hand, in the direct approach, the mode shape is not assumed a priori; the nonlinear effects modify the linear mode shape Ct. n. Therefore, in the case of large-amplitude oscillations, the single-mode discretization may yield inaccurate mode shapes. References 1. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. v., Pilipchuk, V. N., and Zevin A. A., Nonnal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 236,14
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 292 pages. 9.75x7.00x0.75 inches. In Stock.
Verlag: Kluwer Academic Publishers, 2002
ISBN 10: 0792370104 ISBN 13: 9780792370109
Sprache: Englisch
Anbieter: Kennys Bookstore, Olney, MD, USA
EUR 289,43
Währung umrechnenAnzahl: 15 verfügbar
In den WarenkorbZustand: New. Contains a collection of original papers on nonlinear normal modes and localization in dynamical systems from leading experts in the field. This book includes analytical and computational techniques for studying normal modes and localization phenomena in nonlinear discrete and continuous oscillators. Editor(s): Vakakis, Alexander F. Num Pages: 300 pages, biography. BIC Classification: PHD; TGB. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 254 x 178 x 17. Weight in Grams: 738. . 2002. Hardback. . . . . Books ship from the US and Ireland.
EUR 244,90
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbBuch. Zustand: Neu. Neuware - This book contains a collection of original papers on nonlinear normal modes and localization in dynamical systems from leading experts in the field. The reader will find new analytical and computational techniques for studying normal modes and localization phenomena in nonlinear discrete and continuous oscillators. In addition, examples are provided of applications of these concepts to diverse problems of engineering and applied mathematics, such as nonlinear control of micro-gyroscopes, dynamics of floating offshore platforms, buckling of imperfect continua, order reduction of nonlinear systems, dynamics of nonlinear vibration absorbers, spatial localization and pattern formation in extended systems, singular asymptotics and nonlinear modal interactions and energy pumping in coupled oscillators.