Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Verlag: Nova Science Publishers, Incorporated, 2011
ISBN 10: 1606928864 ISBN 13: 9781606928868
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 132,66
Anzahl: 1 verfügbar
In den WarenkorbZustand: New. pp. ix + 121.
Verlag: Nova Science Publishers Inc, 2009
ISBN 10: 1606928864 ISBN 13: 9781606928868
Sprache: Englisch
Anbieter: PBShop.store US, Wood Dale, IL, USA
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Verlag: Nova Science Publishers Inc, 2009
ISBN 10: 1606928864 ISBN 13: 9781606928868
Sprache: Englisch
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 170,81
Anzahl: 2 verfügbar
In den WarenkorbHRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Verlag: Nova Science Publishers Inc, 2009
ISBN 10: 1606928864 ISBN 13: 9781606928868
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Deals with the measure of non-compactness (essential norm) in weighted Lebesgue spaces for maximal, potential and singular operators dened, generally speaking, on homogeneous groups. This book presents an analysis of a class of specific integral operators f.
Verlag: Nova Science Publishers Inc, 2011
ISBN 10: 1606928864 ISBN 13: 9781606928868
Sprache: Englisch
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. Num Pages: 121 pages. BIC Classification: PBKF. Category: (P) Professional & Vocational. Dimension: 267 x 186 x 16. Weight in Grams: 498. . 2011. Hardcover. . . . . Books ship from the US and Ireland.
Verlag: Nova Science Publishers Inc Sep 2009, 2009
ISBN 10: 1606928864 ISBN 13: 9781606928868
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - This book is devoted to the measure of non-compactness (essential norm) in weighted Lebesgue spaces for maximal, potential and singular operators dened, generally speaking, on homogeneous groups. The main topics of the monograph contain related results for potential and singular integrals in weighted function spaces with non-standard growth. One of the main characteristic features of the monograph is that the problems are studied in the two-weighted setting and cover the case of non-linear maps, such as, Hardy-Littlewood and fractional maximal functions. Before, these problems were investigated only for the restricted class of kernel operators consisting only of Hardy-type and Riemann-Liouville transforms. The book may be considered as a systematic and detailed analysis of a class of specific integral operators from the boundedness/compactness or non-compactness point of view. The material is self-contained and can be read by those with some background in real and functional analysis.