Verlag: Cambridge University Press, 2021
ISBN 10: 110899413X ISBN 13: 9781108994132
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 90,07
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. revised edition. 690 pages. 9.75x6.75x1.35 inches. In Stock.
Verlag: Cambridge University Press, 2015
ISBN 10: 1107043166 ISBN 13: 9781107043169
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 124,09
Anzahl: 1 verfügbar
In den WarenkorbZustand: New. pp. 720.
Verlag: Cambridge University Press, 2021
ISBN 10: 110899413X ISBN 13: 9781108994132
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Now in paperback: the new classic on the theory of statistical inference in statistical models with an infinite-dimensional parameter space.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 175,66
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 1st edition. 720 pages. 10.37x7.04x1.71 inches. In Stock.
Verlag: Cambridge University Press, 2015
ISBN 10: 1107043166 ISBN 13: 9781107043169
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In nonparametric and high-dimensional statistical models, the classical Gauss-Fisher-Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, on approximation and wavelet theory, and on the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is then presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In the final chapter, the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions.