Search preferences
Direkt zu den wichtigsten Suchergebnissen

Suchfilter

Produktart

  • Alle Product Types 
  • Bücher (7)
  • Magazine & Zeitschriften (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Comics (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Noten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Kunst, Grafik & Poster (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Fotografien (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Karten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Manuskripte & Papierantiquitäten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)

Zustand Mehr dazu

  • Neu (6)
  • Wie Neu, Sehr Gut oder Gut Bis Sehr Gut (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Gut oder Befriedigend (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Ausreichend oder Schlecht (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Wie beschrieben (1)

Weitere Eigenschaften

  • Erstausgabe (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Signiert (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Schutzumschlag (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Angebotsfoto (5)

Sprache (1)

Preis

Benutzerdefinierte Preisspanne (EUR)

Gratisversand

  • Kostenloser Versand nach USA (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)

Land des Verkäufers

  • Zhang, Wei Emma; Sheng, Quan Z.

    Verlag: Cham, Springer., 2018

    ISBN 10: 3319949349 ISBN 13: 9783319949345

    Sprache: Englisch

    Anbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland

    Verbandsmitglied: GIAQ ILAB VDA

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 20,00

    EUR 30,00 für den Versand von Deutschland nach USA

    Anzahl: 1 verfügbar

    In den Warenkorb

    XIII, 139 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch.

  • Zhang, Wei Emma (Author)/ Sheng, Quan Z. (Author)

    Verlag: Springer, 2018

    ISBN 10: 3319949349 ISBN 13: 9783319949345

    Sprache: Englisch

    Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 153,55

    EUR 11,38 für den Versand von Vereinigtes Königreich nach USA

    Anzahl: 2 verfügbar

    In den Warenkorb

    Hardcover. Zustand: Brand New. 139 pages. 9.25x6.25x0.50 inches. In Stock.

  • Quan Z. Sheng

    Verlag: Springer International Publishing, Springer International Publishing Aug 2018, 2018

    ISBN 10: 3319949349 ISBN 13: 9783319949345

    Sprache: Englisch

    Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 106,99

    EUR 60,00 für den Versand von Deutschland nach USA

    Anzahl: 2 verfügbar

    In den Warenkorb

    Buch. Zustand: Neu. Neuware -In this book, the authors first address the research issues by providing a motivating scenario, followed by the exploration of the principles and techniques of the challenging topics. Then they solve the raised research issues by developing a series of methodologies. More specifically, the authors study the query optimization and tackle the query performance prediction for knowledge retrieval. They also handle unstructured data processing, data clustering for knowledge extraction. To optimize the queries issued through interfaces against knowledge bases, the authors propose a cache-based optimization layer between consumers and the querying interface to facilitate the querying and solve the latency issue. The cache depends on a novel learning method that considers the querying patterns from individual¿s historical queries without having knowledge of the backing systems of the knowledge base. To predict the query performance for appropriate query scheduling, the authors examine the queries¿ structural and syntactical features and apply multiple widely adopted prediction models. Their feature modelling approach eschews the knowledge requirement on both the querying languages and system.To extract knowledge from unstructured Web sources, the authors examine two kinds of Web sources containing unstructured data: the source code from Web repositories and the posts in programming question-answering communities. They use natural language processing techniques to pre-process the source codes and obtain the natural language elements. Then they apply traditional knowledge extraction techniques to extract knowledge. For the data from programming question-answering communities, the authors make the attempt towards building programming knowledge base by starting with paraphrase identification problems and develop novel features to accurately identify duplicate posts. For domain specific knowledge extraction, the authors propose to use a clustering technique toseparate knowledge into different groups. They focus on developing a new clustering algorithm that uses manifold constraints in the optimization task and achieves fast and accurate performance.For each model and approach presented in this dissertation, the authors have conducted extensive experiments to evaluate it using either public dataset or synthetic data they generated.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 156 pp. Englisch.

  • Quan Z. Sheng

    Verlag: Springer International Publishing, 2018

    ISBN 10: 3319949349 ISBN 13: 9783319949345

    Sprache: Englisch

    Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 106,99

    EUR 62,04 für den Versand von Deutschland nach USA

    Anzahl: 1 verfügbar

    In den Warenkorb

    Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In this book, the authors first address the research issues by providing a motivating scenario, followed by the exploration of the principles and techniques of the challenging topics. Then they solve the raised research issues by developing a series of methodologies. More specifically, the authors study the query optimization and tackle the query performance prediction for knowledge retrieval. They also handle unstructured data processing, data clustering for knowledge extraction. To optimize the queries issued through interfaces against knowledge bases, the authors propose a cache-based optimization layer between consumers and the querying interface to facilitate the querying and solve the latency issue. The cache depends on a novel learning method that considers the querying patterns from individual's historical queries without having knowledge of the backing systems of the knowledge base. To predict the query performance for appropriate query scheduling, the authors examine the queries' structural and syntactical features and apply multiple widely adopted prediction models. Their feature modelling approach eschews the knowledge requirement on both the querying languages and system.To extract knowledge from unstructured Web sources, the authors examine two kinds of Web sources containing unstructured data: the source code from Web repositories and the posts in programming question-answering communities. They use natural language processing techniques to pre-process the source codes and obtain the natural language elements. Then they apply traditional knowledge extraction techniques to extract knowledge. For the data from programming question-answering communities, the authors make the attempt towards building programming knowledge base by starting with paraphrase identification problems and develop novel features to accurately identify duplicate posts. For domain specific knowledge extraction, the authors propose to use a clustering technique toseparate knowledge into different groups. They focus on developing a new clustering algorithm that uses manifold constraints in the optimization task and achieves fast and accurate performance.For each model and approach presented in this dissertation, the authors have conducted extensive experiments to evaluate it using either public dataset or synthetic data they generated.

  • Bild des Verkäufers für Managing Data From Knowledge Bases: Querying and Extraction zum Verkauf von preigu

    Quan Z. Sheng (u. a.)

    Verlag: Springer International Publishing, 2019

    ISBN 10: 3030069400 ISBN 13: 9783030069407

    Sprache: Englisch

    Anbieter: preigu, Osnabrück, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 102,30

    EUR 70,00 für den Versand von Deutschland nach USA

    Anzahl: 5 verfügbar

    In den Warenkorb

    Taschenbuch. Zustand: Neu. Managing Data From Knowledge Bases: Querying and Extraction | Quan Z. Sheng (u. a.) | Taschenbuch | xiii | Englisch | 2019 | Springer International Publishing | EAN 9783030069407 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.

  • Quan Z. Sheng

    Verlag: Springer International Publishing, Springer International Publishing Jan 2019, 2019

    ISBN 10: 3030069400 ISBN 13: 9783030069407

    Sprache: Englisch

    Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 117,69

    EUR 60,00 für den Versand von Deutschland nach USA

    Anzahl: 2 verfügbar

    In den Warenkorb

    Taschenbuch. Zustand: Neu. Neuware -In this book, the authors first address the research issues by providing a motivating scenario, followed by the exploration of the principles and techniques of the challenging topics. Then they solve the raised research issues by developing a series of methodologies. More specifically, the authors study the query optimization and tackle the query performance prediction for knowledge retrieval. They also handle unstructured data processing, data clustering for knowledge extraction. To optimize the queries issued through interfaces against knowledge bases, the authors propose a cache-based optimization layer between consumers and the querying interface to facilitate the querying and solve the latency issue. The cache depends on a novel learning method that considers the querying patterns from individual¿s historical queries without having knowledge of the backing systems of the knowledge base. To predict the query performance for appropriate query scheduling, the authors examine the queries¿ structural and syntactical features and apply multiple widely adopted prediction models. Their feature modelling approach eschews the knowledge requirement on both the querying languages and system.To extract knowledge from unstructured Web sources, the authors examine two kinds of Web sources containing unstructured data: the source code from Web repositories and the posts in programming question-answering communities. They use natural language processing techniques to pre-process the source codes and obtain the natural language elements. Then they apply traditional knowledge extraction techniques to extract knowledge. For the data from programming question-answering communities, the authors make the attempt towards building programming knowledge base by starting with paraphrase identification problems and develop novel features to accurately identify duplicate posts. For domain specific knowledge extraction, the authors propose to use a clustering technique toseparate knowledge into different groups. They focus on developing a new clustering algorithm that uses manifold constraints in the optimization task and achieves fast and accurate performance.For each model and approach presented in this dissertation, the authors have conducted extensive experiments to evaluate it using either public dataset or synthetic data they generated.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 156 pp. Englisch.

  • Quan Z. Sheng

    Verlag: Springer International Publishing, Springer International Publishing, 2019

    ISBN 10: 3030069400 ISBN 13: 9783030069407

    Sprache: Englisch

    Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 117,69

    EUR 61,24 für den Versand von Deutschland nach USA

    Anzahl: 1 verfügbar

    In den Warenkorb

    Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In this book, the authors first address the research issues by providing a motivating scenario, followed by the exploration of the principles and techniques of the challenging topics. Then they solve the raised research issues by developing a series of methodologies. More specifically, the authors study the query optimization and tackle the query performance prediction for knowledge retrieval. They also handle unstructured data processing, data clustering for knowledge extraction. To optimize the queries issued through interfaces against knowledge bases, the authors propose a cache-based optimization layer between consumers and the querying interface to facilitate the querying and solve the latency issue. The cache depends on a novel learning method that considers the querying patterns from individual's historical queries without having knowledge of the backing systems of the knowledge base. To predict the query performance for appropriate query scheduling, the authors examine the queries' structural and syntactical features and apply multiple widely adopted prediction models. Their feature modelling approach eschews the knowledge requirement on both the querying languages and system.To extract knowledge from unstructured Web sources, the authors examine two kinds of Web sources containing unstructured data: the source code from Web repositories and the posts in programming question-answering communities. They use natural language processing techniques to pre-process the source codes and obtain the natural language elements. Then they apply traditional knowledge extraction techniques to extract knowledge. For the data from programming question-answering communities, the authors make the attempt towards building programming knowledge base by starting with paraphrase identification problems and develop novel features to accurately identify duplicate posts. For domain specific knowledge extraction, the authors propose to use a clustering technique toseparate knowledge into different groups. They focus on developing a new clustering algorithm that uses manifold constraints in the optimization task and achieves fast and accurate performance.For each model and approach presented in this dissertation, the authors have conducted extensive experiments to evaluate it using either public dataset or synthetic data they generated.