Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 28,21
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. German language. 9.37x6.73x1.65 inches. In Stock.
Sprache: Deutsch
Verlag: MITP Verlags Gmbh Mär 2021, 2021
ISBN 10: 374750213X ISBN 13: 9783747502136
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Mit diesem Buch erhalten Sie eine umfassende Einführung in die Grundlagen und den effektiven Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür setzen Sie ein breites Spektrum leistungsfähiger Python-Bibliotheken ein, insbesondere Keras, TensorFlow 2 und Scikit-learn. Auch die für die praktische Anwendung unverzichtbaren mathematischen Konzepte werden verständlich und anhand zahlreicher Diagramme anschaulich erläutert.MITP Verlags GmbH, Augustinusstraße 9a, 50226 Frechen 768 pp. Deutsch.
Taschenbuch. Zustand: Neu. Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn | Das umfassende Praxis-Handbuch für Data Science, Deep Learning und Predictive Analytics | Sebastian Raschka (u. a.) | Taschenbuch | mitp Professional | 768 S. | Deutsch | 2021 | MITP Verlags GmbH | EAN 9783747502136 | Verantwortliche Person für die EU: mitp Verlags GmbH & Co. KG, Steffen Dralle, Augustinusstr. 9a, 50226 Frechen, steffen[dot]dralle[at]mitp[dot]de | Anbieter: preigu.
Sprache: Deutsch
Verlag: MITP Verlags Gmbh Mär 2021, 2021
ISBN 10: 374750213X ISBN 13: 9783747502136
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Datenanalyse mit ausgereiften statistischen Modellen des Machine LearningsAnwendung der wichtigsten Algorithmen und Python-Bibliotheken wie NumPy, SciPy, Scikit-learn, Keras, TensorFlow 2, Pandas und MatplotlibBest Practices zur Optimierung Ihrer Machine-Learning-AlgorithmenMit diesem Buch erhalten Sie eine umfassende Einführung in die Grundlagen und den effektiven Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür setzen Sie ein breites Spektrum leistungsfähiger Python-Bibliotheken ein, insbesondere Keras, TensorFlow 2 und Scikit-learn. Auch die für die praktische Anwendung unverzichtbaren mathematischen Konzepte werden verständlich und anhand zahlreicher Diagramme anschaulich erläutert.Die dritte Auflage dieses Buchs wurde für TensorFlow 2 komplett aktualisiert und berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig sind. Dazu zählen insbesondere die neuen Features der Keras-API, das Synthetisieren neuer Daten mit Generative Adversarial Networks (GANs) sowie die Entscheidungsfindung per Reinforcement Learning.Ein sicherer Umgang mit Python wird vorausgesetzt.Aus dem Inhalt:Trainieren von Lernalgorithmen und Implementierung in PythonGängige Klassifikationsalgorithmen wie Support Vector Machines (SVM), Entscheidungsbäume und Random ForestNatural Language Processing zur Klassifizierung von FilmbewertungenClusteranalyse zum Auffinden verborgener Muster und Strukturen in Ihren DatenDeep-Learning-Verfahren für die BilderkennungDatenkomprimierung durch DimensionsreduktionTraining Neuronaler Netze und GANs mit TensorFlow 2Kombination verschiedener Modelle für das Ensemble LearningEinbettung von Machine-Learning-Modellen in WebanwendungenStimmungsanalyse in Social NetworksModellierung sequenzieller Daten durch rekurrente Neuronale NetzeReinforcement Learning und Implementierung von Q-Learning-Algorithmen.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
perfect. Zustand: Sehr gut. Gebraucht - Sehr gut SG - leichte Beschädigungen oder Verschmutzungen, ungelesenes Mängelexemplar, gestempelt - Datenanalyse mit ausgereiften statistischen Modellen des Machine LearningsAnwendung der wichtigsten Algorithmen und Python-Bibliotheken wie NumPy, SciPy, Scikit-learn, Keras, TensorFlow 2, Pandas und MatplotlibBest Practices zur Optimierung Ihrer Machine-Learning-AlgorithmenMit diesem Buch erhalten Sie eine umfassende Einführung in die Grundlagen und den effektiven Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür setzen Sie ein breites Spektrum leistungsfähiger Python-Bibliotheken ein, insbesondere Keras, TensorFlow 2 und Scikit-learn. Auch die für die praktische Anwendung unverzichtbaren mathematischen Konzepte werden verständlich und anhand zahlreicher Diagramme anschaulich erläutert.Die dritte Auflage dieses Buchs wurde für TensorFlow 2 komplett aktualisiert und berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig sind. Dazu zählen insbesondere die neuen Features der Keras-API, das Synthetisieren neuer Daten mit Generative Adversarial Networks (GANs) sowie die Entscheidungsfindung per Reinforcement Learning.Ein sicherer Umgang mit Python wird vorausgesetzt.Aus dem Inhalt:Trainieren von Lernalgorithmen und Implementierung in PythonGängige Klassifikationsalgorithmen wie Support Vector Machines (SVM), Entscheidungsbäume und Random ForestNatural Language Processing zur Klassifizierung von FilmbewertungenClusteranalyse zum Auffinden verborgener Muster und Strukturen in Ihren DatenDeep-Learning-Verfahren für die BilderkennungDatenkomprimierung durch DimensionsreduktionTraining Neuronaler Netze und GANs mit TensorFlow 2Kombination verschiedener Modelle für das Ensemble LearningEinbettung von Machine-Learning-Modellen in WebanwendungenStimmungsanalyse in Social NetworksModellierung sequenzieller Daten durch rekurrente Neuronale NetzeReinforcement Learning und Implementierung von Q-Learning-Algorithmen.
Sprache: Deutsch
ISBN 10: 374750213X ISBN 13: 9783747502136
Anbieter: medimops, Berlin, Deutschland
Zustand: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present.