Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich
EUR 60,58
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Fair. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In fair condition, suitable as a study copy. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,2050grams, ISBN:9780262018029.
Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich
EUR 60,58
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Fair. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In fair condition, suitable as a study copy. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,2050grams, ISBN:9780262018029.
Anbieter: diakonia secondhand, München, Deutschland
EUR 72,93
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Gut. 1096 S. Zustand gut. Kleine Schrammen auf dem Einband. Schnitt leicht gewellt. 364 Sprache: Englisch Gewicht in Gramm: 1900 Gebundene Ausgabe, Maße: 21.11 cm x 4.09 cm x 23.65 cm.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 112,00
Währung umrechnenAnzahl: 5 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Studibuch, Stuttgart, Deutschland
EUR 62,59
Währung umrechnenAnzahl: 1 verfügbar
In den Warenkorbhardcover. Zustand: Gut. 1096 Seiten; 9780262018029.3 Gewicht in Gramm: 2.
EUR 126,50
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbBuch. Zustand: Neu. Neuware - A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package PMTK (probabilistic modeling toolkit) that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.