Verlag: Cham, Springer International Publishing., 2015
ISBN 10: 3319191349 ISBN 13: 9783319191348
Sprache: Englisch
Anbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland
235 mm x 155 mm, 0 g. XV, 125 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Intelligent Systems Reference Library ; 92. Sprache: Englisch.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Machine Learning Paradigms | Applications in Recommender Systems | Aristomenis S. Lampropoulos (u. a.) | Taschenbuch | Previously published in hardcover | xv | Englisch | 2016 | Springer | EAN 9783319384962 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Verlag: Springer-Verlag New York Inc, 2016
ISBN 10: 3319384961 ISBN 13: 9783319384962
Sprache: Englisch
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 150,25
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. reprint edition. 140 pages. 9.25x6.10x0.34 inches. In Stock.
Verlag: Springer, Berlin, Springer International Publishing, Springer, 2016
ISBN 10: 3319384961 ISBN 13: 9783319384962
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This timely book presents Applications in Recommender Systems which are making recommendations using machine learning algorithms trained via examples of content the user likes or dislikes. Recommender systems built on the assumption of availability of both positive and negative examples do not perform well when negative examples are rare. It is exactly this problem that the authors address in the monograph at hand. Specifically, the books approach is based on one-class classification methodologies that have been appearing in recent machine learning research. The blending of recommender systems and one-class classification provides a new very fertile field for research, innovation and development with potential applications in 'big data' as well as 'sparse data' problems.The book will be useful to researchers, practitioners and graduate students dealing with problems of extensive and complex data. It is intended for both the expert/researcher in the fields of Pattern Recognition, Machine Learning and Recommender Systems, as well as for the general reader in the fields of Applied and Computer Science who wishes to learn more about the emerging discipline of Recommender Systems and their applications. Finally, the book provides an extended list of bibliographic references which covers the relevant literature completely.