Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 110,04
Anzahl: 1 verfügbar
In den WarenkorbZustand: New.
Sprache: Englisch
Verlag: Springer Nature Switzerland, 2024
ISBN 10: 3031195701 ISBN 13: 9783031195709
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing | Hardware Architectures | Muhammad Shafique (u. a.) | Taschenbuch | xiv | Englisch | 2024 | Springer Nature Switzerland | EAN 9783031195709 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Sprache: Englisch
Verlag: Springer International Publishing, Springer Nature Switzerland Okt 2024, 2024
ISBN 10: 3031195701 ISBN 13: 9783031195709
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 428 pp. Englisch.
Sprache: Englisch
Verlag: Springer International Publishing, Springer International Publishing, 2024
ISBN 10: 3031195701 ISBN 13: 9783031195709
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits.
Anbieter: Buchpark, Trebbin, Deutschland
EUR 74,48
Anzahl: 1 verfügbar
In den WarenkorbZustand: Hervorragend. Zustand: Hervorragend | Seiten: 428 | Sprache: Englisch | Produktart: Bücher | This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 181,06
Anzahl: 1 verfügbar
In den WarenkorbZustand: New.
Sprache: Englisch
Verlag: Springer International Publishing, Springer Nature Switzerland Okt 2023, 2023
ISBN 10: 3031195671 ISBN 13: 9783031195679
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 428 pp. Englisch.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 180,41
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 426 pages. 9.25x6.10x9.21 inches. In Stock.
Sprache: Englisch
Verlag: Springer International Publishing, Springer Nature Switzerland, 2023
ISBN 10: 3031195671 ISBN 13: 9783031195679
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing | Software Optimizations and Hardware/Software Codesign | Sudeep Pasricha (u. a.) | Taschenbuch | xiv | Englisch | 2024 | Springer | EAN 9783031399343 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing | Use Cases and Emerging Challenges | Sudeep Pasricha (u. a.) | Taschenbuch | xv | Englisch | 2024 | Springer | EAN 9783031406799 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Sprache: Englisch
Verlag: Springer Nature Switzerland, Springer Nature Switzerland Okt 2024, 2024
ISBN 10: 303139934X ISBN 13: 9783031399343
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 492 pp. Englisch.
Sprache: Englisch
Verlag: Springer Nature Switzerland, Springer Nature Switzerland Okt 2024, 2024
ISBN 10: 3031406796 ISBN 13: 9783031406799
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 588 pp. Englisch.
Sprache: Englisch
Verlag: Springer Nature Switzerland, Springer Nature Switzerland, 2024
ISBN 10: 303139934X ISBN 13: 9783031399343
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits.Discusses efficient implementation of machine learning in embedded, CPS, IoT, and edge computing;Offers comprehensive coverage of hardware design, software design, and hardware/software co-design and co-optimization;Describes real applications todemonstrate how embedded, CPS, IoT, and edge applications benefit from machine learning.
Sprache: Englisch
Verlag: Springer Nature Switzerland, Springer Nature Switzerland, 2024
ISBN 10: 3031406796 ISBN 13: 9783031406799
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents recent advances towards thegoal ofenabling efficient implementation ofmachine learning models onresource-constrained systems, covering different application domains. Thefocus is onpresenting interesting and new use cases ofapplying machine learning toinnovative application domains, exploring theefficient hardware design ofefficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques forenergy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques forachieving even greater energy, reliability, and performance benefits.Discusses efficient implementation ofmachine learning in embedded, CPS, IoT, and edge computing;Offers comprehensive coverage ofhardware design, software design, and hardware/software co-design and co-optimization;Describes real applications todemonstrate how embedded, CPS, IoT, and edge applications benefit frommachine learning.
Sprache: Englisch
Verlag: Springer Nature Switzerland, Springer Nature Switzerland Okt 2023, 2023
ISBN 10: 3031406761 ISBN 13: 9783031406768
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 588 pp. Englisch.
Sprache: Englisch
Verlag: Springer Nature Switzerland, Springer Nature Switzerland Okt 2023, 2023
ISBN 10: 3031399315 ISBN 13: 9783031399312
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 492 pp. Englisch.
Sprache: Englisch
Verlag: Springer Nature Switzerland, Springer International Publishing, 2023
ISBN 10: 3031399315 ISBN 13: 9783031399312
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits.Discusses efficient implementation of machine learning in embedded, CPS, IoT, and edge computing;Offers comprehensive coverage of hardware design, software design, and hardware/software co-design and co-optimization;Describes real applications todemonstrate how embedded, CPS, IoT, and edge applications benefit from machine learning.
Sprache: Englisch
Verlag: Springer Nature Switzerland, Springer Nature Switzerland, 2023
ISBN 10: 3031406761 ISBN 13: 9783031406768
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents recent advances towards thegoal ofenabling efficient implementation ofmachine learning models onresource-constrained systems, covering different application domains. Thefocus is onpresenting interesting and new use cases ofapplying machine learning toinnovative application domains, exploring theefficient hardware design ofefficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques forenergy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques forachieving even greater energy, reliability, and performance benefits.Discusses efficient implementation ofmachine learning in embedded, CPS, IoT, and edge computing;Offers comprehensive coverage ofhardware design, software design, and hardware/software co-design and co-optimization;Describes real applications todemonstrate how embedded, CPS, IoT, and edge applications benefit frommachine learning.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 300,30
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 491 pages. 9.25x6.10x1.30 inches. In Stock.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 301,80
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 586 pages. 9.25x6.10x9.21 inches. In Stock.