Anbieter: Phatpocket Limited, Waltham Abbey, HERTS, Vereinigtes Königreich
EUR 44,54
Anzahl: 1 verfügbar
In den WarenkorbZustand: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions.
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 137,03
Anzahl: 1 verfügbar
In den WarenkorbZustand: New. pp. 448 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam.
Sprache: Englisch
Verlag: Springer Berlin Heidelberg, 2010
ISBN 10: 3642095119 ISBN 13: 9783642095115
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphicalcomponents of a document and to extract information. With rst papers dating back to the 1960's, DAR is a mature but still gr- ing research eld with consolidated and known techniques. Optical Character Recognition (OCR) engines are some of the most widely recognized pr- ucts of the research in this eld, while broader DAR techniques are nowadays studied and applied to other industrial and o ce automation systems. In the machine learning community, one of the most widely known - search problems addressed in DAR is recognition of unconstrained handwr- ten characters which has been frequently used in the past as a benchmark for evaluating machine learning algorithms, especially supervised classi ers. However, developing a DAR system is a complex engineering task that involves the integration of multiple techniques into an organic framework. A reader may feel that the use of machine learning algorithms is not approp- ate for other DAR tasks than character recognition. On the contrary, such algorithms have been massively used for nearly all the tasks in DAR. With large emphasis being devoted to character recognition and word recognition, other tasks such as pre-processing, layout analysis, character segmentation, and signature veri cation have also bene ted much from machine learning algorithms.
Sprache: Englisch
Verlag: Springer Berlin Heidelberg, 2008
ISBN 10: 3540762795 ISBN 13: 9783540762799
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphicalcomponents of a document and to extract information. With rst papers dating back to the 1960's, DAR is a mature but still gr- ing research eld with consolidated and known techniques. Optical Character Recognition (OCR) engines are some of the most widely recognized pr- ucts of the research in this eld, while broader DAR techniques are nowadays studied and applied to other industrial and o ce automation systems. In the machine learning community, one of the most widely known - search problems addressed in DAR is recognition of unconstrained handwr- ten characters which has been frequently used in the past as a benchmark for evaluating machine learning algorithms, especially supervised classi ers. However, developing a DAR system is a complex engineering task that involves the integration of multiple techniques into an organic framework. A reader may feel that the use of machine learning algorithms is not approp- ate for other DAR tasks than character recognition. On the contrary, such algorithms have been massively used for nearly all the tasks in DAR. With large emphasis being devoted to character recognition and word recognition, other tasks such as pre-processing, layout analysis, character segmentation, and signature veri cation have also bene ted much from machine learning algorithms.
Sprache: Englisch
Verlag: Springer Berlin Heidelberg, Springer Berlin Heidelberg Jan 2008, 2008
ISBN 10: 3540762795 ISBN 13: 9783540762799
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -The objective of Document Analysis and Recognition (DAR) is to recognize the text and graphicalcomponents of a document and to extract information. With rst papers dating back to the 1960¿s, DAR is a mature but still gr- ing research eld with consolidated and known techniques. Optical Character Recognition (OCR) engines are some of the most widely recognized pr- ucts of the research in this eld, while broader DAR techniques are nowadays studied and applied to other industrial and o ce automation systems. In the machine learning community, one of the most widely known - search problems addressed in DAR is recognition of unconstrained handwr- ten characters which has been frequently used in the past as a benchmark for evaluating machine learning algorithms, especially supervised classi ers. However, developing a DAR system is a complex engineering task that involves the integration of multiple techniques into an organic framework. A reader may feel that the use of machine learning algorithms is not approp- ate for other DAR tasks than character recognition. On the contrary, such algorithms have been massively used for nearly all the tasks in DAR. With large emphasis being devoted to character recognition and word recognition, other tasks such as pre-processing, layout analysis, character segmentation, and signature veri cation have also bene ted much from machine learning algorithms.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 448 pp. Englisch.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 230,75
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 434 pages. 9.25x6.10x1.01 inches. In Stock.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 232,40
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 1st edition. 433 pages. 6.50x9.50x1.00 inches. In Stock.