Verlag: London, Springer London Limited, 2000
ISBN 10: 185233343X ISBN 13: 9781852333430
Sprache: Englisch
Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Softcover. 155 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD condition, some traces of use. 9781852333430 Sprache: Englisch Gewicht in Gramm: 550.
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 164 | Sprache: Englisch | Produktart: Sonstiges.
EUR 58,39
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Folding networks, a generalisation of recurrent neural networks to tree structured inputs, are investigated as a mechanism to learn regularities on classical symbolic data, for example. The architecture, the training mechanism, and several applications in different areas are explained. Afterwards a theoretical foundation, proving that the approach is appropriate as a learning mechanism in principle, is presented: Their universal approximation ability is investigated - including several new results for standard recurrent neural networks such as explicit bounds on the required number of neurons and the super Turing capability of sigmoidal recurrent networks. The information theoretical learnability is examined - including several contribution to distribution dependent learnability, an answer to an open question posed by Vidyasagar, and a generalisation of the recent luckiness framework to function classes. Final ly, the complexity of training is considered - including new results on the loading problem for standard feedforward networks with an arbitrary multilayered architecture, a correlated number of neurons and training set size, a varying number of hidden neurons but fixed input dimension, or the sigmoidal activation function, respectively.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 61,11
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.