Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 116,49
Anzahl: 15 verfügbar
In den WarenkorbHRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 139,40
Anzahl: 1 verfügbar
In den WarenkorbZustand: New. pp. 388.
Anbieter: moluna, Greven, Deutschland
EUR 125,68
Anzahl: Mehr als 20 verfügbar
In den WarenkorbGebunden. Zustand: New. This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman f.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 165,90
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 1st edition. 388 pages. 9.25x6.00x1.00 inches. In Stock.
Anbieter: Kennys Bookstore, Olney, MD, USA
EUR 193,24
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. Editor(s): Biegler, Lorenz T.; Biros, George; Ghattas, Omar; Heinkenschloss, Matthias; Keyes, David; Mallick, Bani K.; Tenorio, Luis; Van Bloemen Waanders, Bart; Wilcox, Karen; Marzouk, Youssef. Series: Wiley Series in Computational Statistics. Num Pages: 388 pages, Illustrations. BIC Classification: PBKJ. Category: (P) Professional & Vocational. Dimension: 238 x 159 x 23. Weight in Grams: 760. . 2010. . . . . Books ship from the US and Ireland.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications.