Sprache: Englisch
Verlag: Cambridge University Press, 2024
ISBN 10: 100931825X ISBN 13: 9781009318259
Anbieter: Books From California, Simi Valley, CA, USA
paperback. Zustand: Very Good. Minor shelf wear on cover.
Sprache: Englisch
Verlag: Cambridge University Press, 2024
ISBN 10: 100931825X ISBN 13: 9781009318259
Anbieter: Books From California, Simi Valley, CA, USA
paperback. Zustand: Good. Cover/edges are worn and or have small tears, otherwise good reading copy.
Sprache: Englisch
Verlag: Cambridge University Press, 2024
ISBN 10: 100931825X ISBN 13: 9781009318259
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 41,51
Anzahl: 1 verfügbar
In den WarenkorbZustand: New.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 64,79
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 422 pages. 9.61x6.69x0.89 inches. In Stock.
Sprache: Englisch
Verlag: Cambridge University Press, 2024
ISBN 10: 100931825X ISBN 13: 9781009318259
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Based on the authors' extensive teaching experience, this hands-on graduate-level textbook teaches how to carry out large-scale data analytics and design machine learning solutions for big data. With a focus on fundamentals, this extensively class-tested textbook walks students through key principles and paradigms for working with large-scale data, frameworks for large-scale data analytics (Hadoop, Spark), and explains how to implement machine learning to exploit big data. It is unique in covering the principles that aspiring data scientists need to know, without detail that can overwhelm. Real-world examples, hands-on coding exercises and labs combine with exceptionally clear explanations to maximize student engagement. Well-defined learning objectives, exercises with online solutions for instructors, lecture slides, and an accompanying suite of lab exercises of increasing difficulty in Jupyter Not Elektronisches Buch offer a coherent and convenient teaching package. An ideal teaching resource for courses on large-scale data analytics with machine learning in computer/data science departments.