Verlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 1992
ISBN 10: 3540558403 ISBN 13: 9783540558408
Sprache: Englisch
Anbieter: Ammareal, Morangis, Frankreich
EUR 9,99
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Très bon. Ancien livre de bibliothèque. Edition 1992. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Very good. Former library book. Edition 1992. Ammareal gives back up to 15% of this item's net price to charity organizations.
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 81,92
Anzahl: 1 verfügbar
In den WarenkorbZustand: New. pp. vii + 105.
Verlag: Springer Berlin Heidelberg, 2011
ISBN 10: 3642777376 ISBN 13: 9783642777370
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 92,27
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 149,64
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. reprint edition. 112 pages. 9.25x6.10x0.02 inches. In Stock.
Taschenbuch. Zustand: Neu. Kolmogorov Complexity and Computational Complexity | Osamu Watanabe | Taschenbuch | VII | Englisch | 2011 | Springer | EAN 9783642777370 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Verlag: Springer Berlin Heidelberg, 2011
ISBN 10: 3642777376 ISBN 13: 9783642777370
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The mathematical theory of computation has given rise to two important ap proaches to the informal notion of 'complexity': Kolmogorov complexity, usu ally a complexity measure for a single object such as a string, a sequence etc., measures the amount of information necessary to describe the object. Compu tational complexity, usually a complexity measure for a set of objects, measures the compuational resources necessary to recognize or produce elements of the set. The relation between these two complexity measures has been considered for more than two decades, and may interesting and deep observations have been obtained. In March 1990, the Symposium on Theory and Application of Minimal Length Encoding was held at Stanford University as a part of the AAAI 1990 Spring Symposium Series. Some sessions of the symposium were dedicated to Kolmogorov complexity and its relations to the computational complexity the ory, and excellent expository talks were given there. Feeling that, due to the importance of the material, some way should be found to share these talks with researchers in the computer science community, I asked the speakers of those sessions to write survey papers based on their talks in the symposium. In response, five speakers from the sessions contributed the papers which appear in this book.