Verlag: Cambridge University Press, 1984
ISBN 10: 0521269601 ISBN 13: 9780521269605
Sprache: Englisch
Anbieter: MB Books, Derbyshire, Vereinigtes Königreich
EUR 18,90
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbSoft cover. Zustand: Fair. No Jacket. Condition : Fair/very usable study copy. Former-university library copy with associated markings. Soft cover, no jacket. 213pp. No annotations or highlighting. Cover faded and covered in non-removable laminate, which is starting to bubble. Photo on request.
Verlag: Cambridge University Press, 1986
ISBN 10: 0521269601 ISBN 13: 9780521269605
Sprache: Englisch
Anbieter: Antiquariat Bernhardt, Kassel, Deutschland
EUR 38,00
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbBroschiert. Zustand: Sehr gut. Zust: Gutes Exemplar. X, 213 Seiten, Englisch 304g.
Verlag: Cambridge University Press, 1986
ISBN 10: 0521269601 ISBN 13: 9780521269605
Sprache: Englisch
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 59,22
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Cambridge University Press, 1984
ISBN 10: 0521264189 ISBN 13: 9780521264181
Sprache: Englisch
Anbieter: Better World Books, Mishawaka, IN, USA
EUR 65,88
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects.
Verlag: Cambridge University Press, 1986
ISBN 10: 0521269601 ISBN 13: 9780521269605
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 112,50
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Professor Ito is one of the most distinguished probability theorists in the world, and in this modern, concise introduction to the subject he explains basic probabilistic concepts rigorously and yet gives at the same time an intuitive understanding of random phenomena.In the first chapter he considers finite situations, but from an advanced standpoint that enables the transition to greater generality to be achieved the more easily. Chapter 2 deals with probability measures and includes a discussion of the fundamental concepts of probability theory. These concepts are formulated abstractly but without sacrificing intuition. The last chapter is devoted to infinite sums of independent real random variables. Each chapter is divided into sections that end with a set of problems with hints for solution.This textbook will be particularly valuable to students of mathematics taking courses in probability theory who need a modern introduction to the subject that yet does not allow overemphasis on abstractness to cloud the issues involved.