Verlag: Nova Science Publishers Inc, 2011
ISBN 10: 1616683627 ISBN 13: 9781616683627
Sprache: Englisch
Anbieter: PBShop.store US, Wood Dale, IL, USA
EUR 57,44
Währung umrechnenAnzahl: 3 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Verlag: Nova Science Publishers Inc, 2011
ISBN 10: 1616683627 ISBN 13: 9781616683627
Sprache: Englisch
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 52,68
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbPAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Verlag: Nova Science Publishers Inc, 2010
ISBN 10: 1616683627 ISBN 13: 9781616683627
Sprache: Englisch
Anbieter: Kennys Bookstore, Olney, MD, USA
EUR 70,63
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbZustand: New. Editor(s): Apelblat, Alexander. Num Pages: 223 pages. BIC Classification: PBKF. Category: (P) Professional & Vocational. Dimension: 227 x 152 x 14. Weight in Grams: 350. . 2010. Paperback. . . . . Books ship from the US and Ireland.
Verlag: Nova Science Publishers Inc, 2011
ISBN 10: 1616683627 ISBN 13: 9781616683627
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 53,95
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbKartoniert / Broschiert. Zustand: New. Examines both integral equations and Volterra functions and highlights the important roles that each of these functions perform.KlappentextrnrnThe Volterra functions appeared at the beginning of the second decade of the twentieth century in .
Verlag: Nova Science Publishers Inc Feb 2011, 2011
ISBN 10: 1616683627 ISBN 13: 9781616683627
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 65,25
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Neuware - The Volterra functions appeared at the beginning of the second decade of the twentieth century in the theory of definite integrals, integral equations and prime numbers in the works of famous mathematicians Srinivasa Ramanujan, Jacques Touchard, Vito Volterra and Edmund Landau. However, between 1943-1953, the Volterra functions started to play an important role also in the investigations of a number of French mathematicians because they found that these functions are the direct and inverse transforms in the laplace transformation of some elementary and special functions. This book examines both integral equations and Volterra functions in detail and highlights the important roles that each of these functions perform.