Search preferences
Direkt zu den wichtigsten Suchergebnissen

Suchfilter

Produktart

  • Alle Product Types 
  • Bücher (7)
  • Magazine & Zeitschriften (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Comics (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Noten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Kunst, Grafik & Poster (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Fotografien (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Karten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Manuskripte & Papierantiquitäten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)

Zustand Mehr dazu

Weitere Eigenschaften

  • Erstausgabe (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Signiert (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Schutzumschlag (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Angebotsfoto (4)

Sprache (1)

Preis

  • Beliebiger Preis 
  • Weniger als EUR 20 (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • EUR 20 bis EUR 45 (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Mehr als EUR 45 
Benutzerdefinierte Preisspanne (EUR)

Gratisversand

  • Kostenloser Versand nach USA (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)

Land des Verkäufers

  • Francisco Escolano Ruiz

    Verlag: Springer London, Springer London Jul 2009, 2009

    ISBN 10: 1848822960 ISBN 13: 9781848822962

    Sprache: Englisch

    Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 106,99

    EUR 60,00 für den Versand von Deutschland nach USA

    Anzahl: 2 verfügbar

    In den Warenkorb

    Buch. Zustand: Neu. Neuware -Information theory has proved to be effective for solving many computer vision and pattern recognition (CVPR) problems (such as image matching, clustering and segmentation, saliency detection, feature selection, optimal classifier design and many others). Nowadays, researchers are widely bringing information theory elements to the CVPR arena. Among these elements there are measures (entropy, mutual information¿), principles (maximum entropy, minimax entropy¿) and theories (rate distortion theory, method of types¿).This book explores and introduces the latter elements through an incremental complexity approach at the same time where CVPR problems are formulated and the most representative algorithms are presented. Interesting connections between information theory principles when applied to different problems are highlighted, seeking a comprehensive research roadmap. The result is a novel tool both for CVPR and machine learning researchers, and contributes to across-fertilization of both areas.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 384 pp. Englisch.

  • Francisco Escolano Ruiz

    Verlag: Springer London, Springer London Nov 2014, 2014

    ISBN 10: 1447156935 ISBN 13: 9781447156932

    Sprache: Englisch

    Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 106,99

    EUR 60,00 für den Versand von Deutschland nach USA

    Anzahl: 2 verfügbar

    In den Warenkorb

    Taschenbuch. Zustand: Neu. Neuware -Information theory has proved to be effective for solving many computer vision and pattern recognition (CVPR) problems (such as image matching, clustering and segmentation, saliency detection, feature selection, optimal classifier design and many others). Nowadays, researchers are widely bringing information theory elements to the CVPR arena. Among these elements there are measures (entropy, mutual information¿), principles (maximum entropy, minimax entropy¿) and theories (rate distortion theory, method of types¿).This book explores and introduces the latter elements through an incremental complexity approach at the same time where CVPR problems are formulated and the most representative algorithms are presented. Interesting connections between information theory principles when applied to different problems are highlighted, seeking a comprehensive research roadmap. The result is a novel tool both for CVPR and machine learning researchers, and contributes to across-fertilization of both areas.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 384 pp. Englisch.

  • Francisco Escolano Ruiz, Boyán Ivanov Bonev, Pablo Suau Pérez

    Verlag: Springer London, 2009

    ISBN 10: 1848822960 ISBN 13: 9781848822962

    Sprache: Englisch

    Anbieter: Buchpark, Trebbin, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 65,27

    EUR 105,00 für den Versand von Deutschland nach USA

    Anzahl: 1 verfügbar

    In den Warenkorb

    Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 384 | Sprache: Englisch | Produktart: Bücher | Information theory has proved to be effective for solving many computer vision and pattern recognition (CVPR) problems (such as image matching, clustering and segmentation, saliency detection, feature selection, optimal classifier design and many others). Nowadays, researchers are widely bringing information theory elements to the CVPR arena. Among these elements there are measures (entropy, mutual information¿), principles (maximum entropy, minimax entropy¿) and theories (rate distortion theory, method of types¿).This book explores and introduces the latter elements through an incremental complexity approach at the same time where CVPR problems are formulated and the most representative algorithms are presented. Interesting connections between information theory principles when applied to different problems are highlighted, seeking a comprehensive research roadmap. The result is a novel tool both for CVPR and machine learning researchers, and contributes to across-fertilization of both areas.

  • Francisco Escolano Ruiz, Boyán Ivanov Bonev, Pablo Suau Pérez

    Verlag: Springer London, 2009

    ISBN 10: 1848822960 ISBN 13: 9781848822962

    Sprache: Englisch

    Anbieter: Buchpark, Trebbin, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 65,27

    EUR 105,00 für den Versand von Deutschland nach USA

    Anzahl: 1 verfügbar

    In den Warenkorb

    Zustand: Hervorragend. Zustand: Hervorragend | Seiten: 384 | Sprache: Englisch | Produktart: Bücher | Information theory has proved to be effective for solving many computer vision and pattern recognition (CVPR) problems (such as image matching, clustering and segmentation, saliency detection, feature selection, optimal classifier design and many others). Nowadays, researchers are widely bringing information theory elements to the CVPR arena. Among these elements there are measures (entropy, mutual information¿), principles (maximum entropy, minimax entropy¿) and theories (rate distortion theory, method of types¿).This book explores and introduces the latter elements through an incremental complexity approach at the same time where CVPR problems are formulated and the most representative algorithms are presented. Interesting connections between information theory principles when applied to different problems are highlighted, seeking a comprehensive research roadmap. The result is a novel tool both for CVPR and machine learning researchers, and contributes to across-fertilization of both areas.

  • Francisco Escolano Ruiz, Boyán Ivanov Bonev, Pablo Suau Pérez

    Verlag: Springer London, 2009

    ISBN 10: 1848822960 ISBN 13: 9781848822962

    Sprache: Englisch

    Anbieter: Buchpark, Trebbin, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 65,27

    EUR 105,00 für den Versand von Deutschland nach USA

    Anzahl: 1 verfügbar

    In den Warenkorb

    Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 384 | Sprache: Englisch | Produktart: Bücher | Information theory has proved to be effective for solving many computer vision and pattern recognition (CVPR) problems (such as image matching, clustering and segmentation, saliency detection, feature selection, optimal classifier design and many others). Nowadays, researchers are widely bringing information theory elements to the CVPR arena. Among these elements there are measures (entropy, mutual information¿), principles (maximum entropy, minimax entropy¿) and theories (rate distortion theory, method of types¿).This book explores and introduces the latter elements through an incremental complexity approach at the same time where CVPR problems are formulated and the most representative algorithms are presented. Interesting connections between information theory principles when applied to different problems are highlighted, seeking a comprehensive research roadmap. The result is a novel tool both for CVPR and machine learning researchers, and contributes to across-fertilization of both areas.

  • Francisco Escolano Ruiz

    Verlag: Springer London, Springer London, 2014

    ISBN 10: 1447156935 ISBN 13: 9781447156932

    Sprache: Englisch

    Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 111,53

    EUR 62,91 für den Versand von Deutschland nach USA

    Anzahl: 1 verfügbar

    In den Warenkorb

    Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Information theory has proved to be effective for solving many computer visionand pattern recognition (CVPR) problems (such as image matching, clustering and segmentation, saliency detection, feature selection, optimal classifier design and many others). Nowadays, researchers are widely bringing information theory elements to the CVPR arena. Among these elements there are measures (entropy, mutual information.), principles (maximum entropy, minimax entropy.) and theories (rate distortion theory, method of types.).This book explores and introduces the latter elements through an incremental complexity approach at the same time where CVPR problems are formulated and the most representative algorithms are presented. Interesting connections between information theory principles when applied to different problems are highlighted, seeking a comprehensive research roadmap. The result is a novel tool both for CVPR and machine learning researchers, and contributes to across-fertilization of both areas.

  • Francisco Escolano Ruiz

    Verlag: Springer London, Springer London, 2009

    ISBN 10: 1848822960 ISBN 13: 9781848822962

    Sprache: Englisch

    Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 111,53

    EUR 64,06 für den Versand von Deutschland nach USA

    Anzahl: 1 verfügbar

    In den Warenkorb

    Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Information theory has proved to be effective for solving many computer visionand pattern recognition (CVPR) problems (such as image matching, clustering and segmentation, saliency detection, feature selection, optimal classifier design and many others). Nowadays, researchers are widely bringing information theory elements to the CVPR arena. Among these elements there are measures (entropy, mutual information.), principles (maximum entropy, minimax entropy.) and theories (rate distortion theory, method of types.).This book explores and introduces the latter elements through an incremental complexity approach at the same time where CVPR problems are formulated and the most representative algorithms are presented. Interesting connections between information theory principles when applied to different problems are highlighted, seeking a comprehensive research roadmap. The result is a novel tool both for CVPR and machine learning researchers, and contributes to across-fertilization of both areas.