Verlag: Springer-Verlag, New York, 2002
ISBN 10: 0387953957 ISBN 13: 9780387953953
Sprache: Englisch
Anbieter: Downtown Books & News, Asheville, NC, USA
Hardcover. Zustand: Fine. no additional printings listed. 8vo (9.5"x6.25"). 472pp. Typographic paper-covered boards. Diagrams throughout. From the series: Graduate Texts in Mathematics (#213). No dj. as issued.
Verlag: New York, Springer (Graduate Texts in Mathematics / GTM 213), 2002
ISBN 10: 0387953957 ISBN 13: 9780387953953
Sprache: Englisch
Anbieter: Antiquariat Smock, Freiburg, Deutschland
Erstausgabe
Zustand: Sehr gut. Formateinband: Pappband / gebundene Ausgabe XV, 392 S. (24 cm) 1st Edition; Gebunden; Sehr guter Zustand. Sprache: Englisch Gewicht in Gramm: 900 [Stichwörter: ].
Verlag: New York. Springer-Verlag., 2002
ISBN 10: 0387953957 ISBN 13: 9780387953953
Sprache: Englisch
Anbieter: Antiquariat Bernhardt, Kassel, Deutschland
Karton. Zustand: Sehr gut. Zust: Gutes Exemplar. 392 Seiten, mit Abbildungen, Englisch 714g.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 155,79
Anzahl: 2 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 1st edition. 392 pages. 9.50x6.25x0.75 inches. In Stock.
Verlag: Springer New York, Springer New York Apr 2002, 2002
ISBN 10: 0387953957 ISBN 13: 9780387953953
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -The aim of this book is to give an understandable introduction to the the ory of complex manifolds. With very few exceptions we give complete proofs. Many examples and figures along with quite a few exercises are included. Our intent is to familiarize the reader with the most important branches and methods in complex analysis of several variables and to do this as simply as possible. Therefore, the abstract concepts involved with sheaves, coherence, and higher-dimensional cohomology are avoided. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional co cycles are used. Nevertheless, deep results can be proved, for example the Remmert-Stein theorem for analytic sets, finiteness theorems for spaces of cross sections in holomorphic vector bundles, and the solution of the Levi problem. The first chapter deals with holomorphic functions defined in open sub sets of the space en. Many of the well-known properties of holomorphic functions of one variable, such as the Cauchy integral formula or the maxi mum principle, can be applied directly to obtain corresponding properties of holomorphic functions of several variables. Furthermore, certain properties of differentiable functions of several variables, such as the implicit and inverse function theorems, extend easily to holomorphic functions.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 416 pp. Englisch.
Verlag: Springer New York, Springer New York, 2002
ISBN 10: 0387953957 ISBN 13: 9780387953953
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The aim of this book is to give an understandable introduction to the the ory of complex manifolds. With very few exceptions we give complete proofs. Many examples and figures along with quite a few exercises are included. Our intent is to familiarize the reader with the most important branches and methods in complex analysis of several variables and to do this as simply as possible. Therefore, the abstract concepts involved with sheaves, coherence, and higher-dimensional cohomology are avoided. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional co cycles are used. Nevertheless, deep results can be proved, for example the Remmert-Stein theorem for analytic sets, finiteness theorems for spaces of cross sections in holomorphic vector bundles, and the solution of the Levi problem. The first chapter deals with holomorphic functions defined in open sub sets of the space en. Many of the well-known properties of holomorphic functions of one variable, such as the Cauchy integral formula or the maxi mum principle, can be applied directly to obtain corresponding properties of holomorphic functions of several variables. Furthermore, certain properties of differentiable functions of several variables, such as the implicit and inverse function theorems, extend easily to holomorphic functions.