Sprache: Englisch
Verlag: The Mathematical Association of America, 2011
ISBN 10: 0883853515 ISBN 13: 9780883853511
Anbieter: Attic Books (ABAC, ILAB), London, ON, Kanada
Hardcover. Zustand: Fine. The Dolciani Mathematical Expositions No. 44. MAA Guides # 6. xii, 250 p. 24 cm.
Sprache: Englisch
Verlag: MP-AMM American Mathematical, 2011
ISBN 10: 0883853515 ISBN 13: 9780883853511
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
EUR 71,00
Anzahl: 6 verfügbar
In den WarenkorbHRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000.
Sprache: Englisch
Verlag: Mathematical Assn of Amer, 2011
ISBN 10: 0883853515 ISBN 13: 9780883853511
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 66,19
Anzahl: 1 verfügbar
In den WarenkorbHardcover. Zustand: Brand New. 251 pages. 9.50x6.00x0.80 inches. In Stock.
Sprache: Englisch
Verlag: Mathematical Association of America, 2011
ISBN 10: 0883853515 ISBN 13: 9780883853511
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 81,68
Anzahl: 3 verfügbar
In den WarenkorbZustand: New. pp. xii + 251 Illus.
Zustand: New. Über den AutorSteven H. Weintraub is Professor of Mathematics at Lehigh University. He is the author of over fifty research papers and this is his ninth book.InhaltsverzeichnisPreface 1. Vector spaces an.
Sprache: Englisch
Verlag: Mathematical Association Of America (MAA) Jul 2011, 2011
ISBN 10: 0883853515 ISBN 13: 9780883853511
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Linear algebra occupies a central place in modern mathematics. This book provides a rigorous and thorough development of linear algebra at an advanced level, and is directed at graduate students and professional mathematicians. It approaches linear algebra from an algebraic point of view, but its selection of topics is governed not only for their importance in linear algebra itself, but also for their applications throughout mathematics. Students in algebra, analysis, and topology will find much of interest and use to them, and the careful treatment and breadth of subject matter will make this book a valuable reference for mathematicians throughout their professional lives. Topics treated in this book include: vector spaces and linear transformations; dimension counting and applications; representation of linear transformations by matrices; duality; determinants and their uses; rational and especially Jordan canonical form; bilinear forms; inner product spaces; normal linear transformations and the spectral theorem; and an introduction to matrix groups as Lie groups. The book treats vector spaces in full generality, though it concentrates on the finite dimensional case. Also, it treats vector spaces over arbitrary fields, specializing to algebraically closed fields or to the fields of real and complex numbers as necessary.