Anbieter: Zubal-Books, Since 1961, Cleveland, OH, USA
EUR 26,06
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Very Good. *Price HAS BEEN REDUCED by 10% until Monday, Sept. 29 (sale item)* First edition, first printing, 368 pp., hardcover, previous owner's name to the front free endpaper, light wear to cover edges else text clean & binding tight. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country.
EUR 37,96
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,750grams, ISBN:0387907882.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 72,19
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 99,19
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Springer US, Springer New York, 2012
ISBN 10: 1461270227 ISBN 13: 9781461270225
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 74,46
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This text is intended to serve as an introduction to the geometry of the action of discrete groups of Mobius transformations. The subject matter has now been studied with changing points of emphasis for over a hundred years, the most recent developments being connected with the theory of 3-manifolds: see, for example, the papers of Poincare [77] and Thurston [101]. About 1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen manuscript appeared. Sadly, the manuscript never appeared in print, and this more modest text attempts to display at least some of the beautiful geo metrical ideas to be found in that manuscript, as well as some more recent material. The text has been written with the conviction that geometrical explana tions are essential for a full understanding of the material and that however simple a matrix proof might seem, a geometric proof is almost certainly more profitable. Further, wherever possible, results should be stated in a form that is invariant under conjugation, thus making the intrinsic nature of the result more apparent. Despite the fact that the subject matter is concerned with groups of isometries of hyperbolic geometry, many publications rely on Euclidean estimates and geometry. However, the recent developments have again emphasized the need for hyperbolic geometry, and I have included a comprehensive chapter on analytical (not axiomatic) hyperbolic geometry. It is hoped that this chapter will serve as a 'dictionary' offormulae in plane hyperbolic geometry and as such will be of interest and use in its own right.
Verlag: Springer New York, Springer US Mai 1983, 1983
ISBN 10: 0387907882 ISBN 13: 9780387907888
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
EUR 96,29
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbBuch. Zustand: Neu. Neuware -This text is intended to serve as an introduction to the geometry of the action of discrete groups of Mobius transformations. The subject matter has now been studied with changing points of emphasis for over a hundred years, the most recent developments being connected with the theory of 3-manifolds: see, for example, the papers of Poincare [77] and Thurston [101]. About 1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen manuscript appeared. Sadly, the manuscript never appeared in print, and this more modest text attempts to display at least some of the beautiful geo metrical ideas to be found in that manuscript, as well as some more recent material. The text has been written with the conviction that geometrical explana tions are essential for a full understanding of the material and that however simple a matrix proof might seem, a geometric proof is almost certainly more profitable. Further, wherever possible, results should be stated in a form that is invariant under conjugation, thus making the intrinsic nature of the result more apparent. Despite the fact that the subject matter is concerned with groups of isometries of hyperbolic geometry, many publications rely on Euclidean estimates and geometry. However, the recent developments have again emphasized the need for hyperbolic geometry, and I have included a comprehensive chapter on analytical (not axiomatic) hyperbolic geometry. It is hoped that this chapter will serve as a 'dictionary' offormulae in plane hyperbolic geometry and as such will be of interest and use in its own right.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 356 pp. Englisch.
Verlag: Springer New York, Springer US, 1983
ISBN 10: 0387907882 ISBN 13: 9780387907888
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 100,94
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbBuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This text is intended to serve as an introduction to the geometry of the action of discrete groups of Mobius transformations. The subject matter has now been studied with changing points of emphasis for over a hundred years, the most recent developments being connected with the theory of 3-manifolds: see, for example, the papers of Poincare [77] and Thurston [101]. About 1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen manuscript appeared. Sadly, the manuscript never appeared in print, and this more modest text attempts to display at least some of the beautiful geo metrical ideas to be found in that manuscript, as well as some more recent material. The text has been written with the conviction that geometrical explana tions are essential for a full understanding of the material and that however simple a matrix proof might seem, a geometric proof is almost certainly more profitable. Further, wherever possible, results should be stated in a form that is invariant under conjugation, thus making the intrinsic nature of the result more apparent. Despite the fact that the subject matter is concerned with groups of isometries of hyperbolic geometry, many publications rely on Euclidean estimates and geometry. However, the recent developments have again emphasized the need for hyperbolic geometry, and I have included a comprehensive chapter on analytical (not axiomatic) hyperbolic geometry. It is hoped that this chapter will serve as a 'dictionary' offormulae in plane hyperbolic geometry and as such will be of interest and use in its own right.