Verlag: Springer-Verlag, Berlin, Heidelberg, New York, 1978
ISBN 10: 354090302X ISBN 13: 9783540903024
EUR 21,00
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Gut. 1. Edition;. Gr.8° Orig.-Pappband; 650g; [Englisch]; Rücken ausgeblichen, sonst kaum Gebrauchsspuren // spine faded, otherwise fine 1. Edition; [lgr=L] _ x2x_. BUCH.
Verlag: New York, Springer, ,, 1978
Anbieter: Antiquariat Gothow & Motzke, Berlin, Deutschland
EUR 24,00
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbX/275 S./pp., Originalpappband (publisher's cardboard covers), Bibliotheksexemplar in gutem Zustand / exlibrary in good condition (Stempel auf Titel / title stamped, Rückenschildchen / lettering pannel to the spine, Block sehr gut / contents fine, keine Unterstreichungen oder Anstreichungen / no underlining or remarks, in Folie eingeschlagen / wrapped up in foil), (Applications of Mathematics 9), Sprache: englisch.
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 277 | Sprache: Englisch | Produktart: Bücher.
Anbieter: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Deutschland
EUR 46,95
Währung umrechnenAnzahl: 1 verfügbar
In den Warenkorbgebundene Ausgabe. Zustand: Gut. 275 Seiten Der Erhaltungszustand des hier angebotenen Werks ist trotz seiner Bibliotheksnutzung sehr sauber. Es befindet sich neben dem Rückenschild lediglich ein Bibliotheksstempel im Buch; ordnungsgemäß entwidmet. In ENGLISCHER Sprache. Sprache: Englisch Gewicht in Gramm: 650.
Verlag: Springer New York, Springer New York Nov 2011, 2011
ISBN 10: 1461262771 ISBN 13: 9781461262770
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
EUR 53,49
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Neuware -The book deals mainly with three problems involving Gaussian stationary processes. The first problem consists of clarifying the conditions for mutual absolute continuity (equivalence) of probability distributions of a 'random process segment' and of finding effective formulas for densities of the equiva lent distributions. Our second problem is to describe the classes of spectral measures corresponding in some sense to regular stationary processes (in par ticular, satisfying the well-known 'strong mixing condition') as well as to describe the subclasses associated with 'mixing rate'. The third problem involves estimation of an unknown mean value of a random process, this random process being stationary except for its mean, i. e. , it is the problem of 'distinguishing a signal from stationary noise'. Furthermore, we give here auxiliary information (on distributions in Hilbert spaces, properties of sam ple functions, theorems on functions of a complex variable, etc. ). Since 1958 many mathematicians have studied the problem of equivalence of various infinite-dimensional Gaussian distributions (detailed and sys tematic presentation of the basic results can be found, for instance, in [23]). In this book we have considered Gaussian stationary processes and arrived, we believe, at rather definite solutions. The second problem mentioned above is closely related with problems involving ergodic theory of Gaussian dynamic systems as well as prediction theory of stationary processes.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 292 pp. Englisch.
Verlag: Springer New York, Springer New York, 2011
ISBN 10: 1461262771 ISBN 13: 9781461262770
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 58,39
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The book deals mainly with three problems involving Gaussian stationary processes. The first problem consists of clarifying the conditions for mutual absolute continuity (equivalence) of probability distributions of a 'random process segment' and of finding effective formulas for densities of the equiva lent distributions. Our second problem is to describe the classes of spectral measures corresponding in some sense to regular stationary processes (in par ticular, satisfying the well-known 'strong mixing condition') as well as to describe the subclasses associated with 'mixing rate'. The third problem involves estimation of an unknown mean value of a random process, this random process being stationary except for its mean, i. e. , it is the problem of 'distinguishing a signal from stationary noise'. Furthermore, we give here auxiliary information (on distributions in Hilbert spaces, properties of sam ple functions, theorems on functions of a complex variable, etc. ). Since 1958 many mathematicians have studied the problem of equivalence of various infinite-dimensional Gaussian distributions (detailed and sys tematic presentation of the basic results can be found, for instance, in [23]). In this book we have considered Gaussian stationary processes and arrived, we believe, at rather definite solutions. The second problem mentioned above is closely related with problems involving ergodic theory of Gaussian dynamic systems as well as prediction theory of stationary processes.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 61,23
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
EUR 138,46
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbGebunden. Zustand: New. The book deals mainly with three problems involving Gaussian stationary processes. The first problem consists of clarifying the conditions for mutual absolute continuity (equivalence) of probability distributions of a random process segment and of finding.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 142,68
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. In.
Verlag: Springer New York Dez 1978, 1978
ISBN 10: 038790302X ISBN 13: 9780387903026
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 191,27
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbBuch. Zustand: Neu. Neuware - The book deals mainly with three problems involving Gaussian stationary processes. The first problem consists of clarifying the conditions for mutual absolute continuity (equivalence) of probability distributions of a 'random process segment' and of finding effective formulas for densities of the equiva lent distributions. Our second problem is to describe the classes of spectral measures corresponding in some sense to regular stationary processes (in par ticular, satisfying the well-known 'strong mixing condition') as well as to describe the subclasses associated with 'mixing rate'. The third problem involves estimation of an unknown mean value of a random process, this random process being stationary except for its mean, i. e. , it is the problem of 'distinguishing a signal from stationary noise'. Furthermore, we give here auxiliary information (on distributions in Hilbert spaces, properties of sam ple functions, theorems on functions of a complex variable, etc. ). Since 1958 many mathematicians have studied the problem of equivalence of various infinite-dimensional Gaussian distributions (detailed and sys tematic presentation of the basic results can be found, for instance, in [23]). In this book we have considered Gaussian stationary processes and arrived, we believe, at rather definite solutions. The second problem mentioned above is closely related with problems involving ergodic theory of Gaussian dynamic systems as well as prediction theory of stationary processes.