Verlag: O'Reilly Media (edition 1), 2023
ISBN 10: 1098133293 ISBN 13: 9781098133290
Sprache: Englisch
Anbieter: BooksRun, Philadelphia, PA, USA
EUR 19,80
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Good. 1. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported.
Anbieter: WeBuyBooks, Rossendale, LANCS, Vereinigtes Königreich
EUR 28,19
Währung umrechnenAnzahl: 1 verfügbar
In den WarenkorbZustand: Very Good. Most items will be dispatched the same or the next working day. A copy that has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged.
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
EUR 51,05
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbZustand: New. In.
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
EUR 67,03
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Neuware - Quickly detect, troubleshoot, and prevent a wide range of data issues through data observability, a set of best practices that enables data teams to gain greater visibility of data and its usage. If you're a data engineer, data architect, or machine learning engineer who depends on the quality of your data, this book shows you how to focus on the practical aspects of introducing data observability in your everyday work. Author Andy Petrella helps you build the right habits to identify and solve data issues, such as data drifts and poor quality, so you can stop their propagation in data applications, pipelines, and analytics. You'll learn ways to introduce data observability, including setting up a framework for generating and collecting all the information you need.
Anbieter: moluna, Greven, Deutschland
EUR 58,58
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbKartoniert / Broschiert. Zustand: New. Über den AutorAndy Petrella has been in the data industry for almost 20 years, starting his career as a software engineer and data miner in the GIS space. He has evangelized big data for more than a decade, especially Apache Spark f.