Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Anbieter: Fireside Bookshop, Stroud, GLOS, Vereinigtes Königreich
Verbandsmitglied: PBFA
EUR 41,25
Anzahl: 1 verfügbar
In den WarenkorbCloth/Laminated Boards. Zustand: Very Good. Type: Book N.B. Small plain label to front paste down. Secondhand POD copy.
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Verlag: New York. Springer-Verlag., 2002
ISBN 10: 038795323X ISBN 13: 9780387953236
Sprache: Englisch
Anbieter: Antiquariat Bernhardt, Kassel, Deutschland
Karton. Zustand: Sehr gut. Zust: Gutes Exemplar. 317 Seiten, mit Abbildungen; Englisch 622g.
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Gut. Zustand: Gut | Seiten: 319 | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar.
Anbieter: moluna, Greven, Deutschland
EUR 116,31
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. useful for a course in Riemannian geometry Spherical soap bubbles , isometric minimal immersions of round spheres into round spheres, or spherical immersions for short, belong to a fast growing and fascinating area between algebra and geometry. I.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Finite Möbius Groups, Minimal Immersions of Spheres, and Moduli | Gabor Toth | Taschenbuch | xvi | Englisch | 2012 | Springer US | EAN 9781461265467 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Verlag: Springer New York, Springer New York, 2012
ISBN 10: 1461265460 ISBN 13: 9781461265467
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - 'Spherical soap bubbles', isometric minimal immersions of round spheres into round spheres, or spherical immersions for short, belong to a fast growing and fascinating area between algebra and geometry. This theory has rich interconnections with a variety of mathematical disciplines such as invariant theory, convex geometry, harmonic maps, and orthogonal multiplications. In this book, the author traces the development of the study of spherical minimal immersions over the past 30 plus years, including Takahashi's 1966 proof regarding the existence of isometric minimal immersions, DoCarmo and Wallach's study of the uniqueness of the standard minimal immersion in the seventies, and more recently, he examines the variety of spherical minimal immersions which have been obtained by the 'equivariant construction' as SU(2)-orbits, first used by Mashimo in 1984 and then later by DeTurck and Ziller in 1992. In trying to make this monograph accessible not just to research mathematicians but mathematics graduate students as well, the author included sizeable pieces of material from upper level undergraduate courses, additional graduate level topics such as Felix Klein's classic treatise of the icosahedron, and a valuable selection of exercises at the end of each chapter.
Verlag: Springer New York Nov 2001, 2001
ISBN 10: 038795323X ISBN 13: 9780387953236
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - 'Spherical soap bubbles', isometric minimal immersions of round spheres into round spheres, or spherical immersions for short, belong to a fast growing and fascinating area between algebra and geometry. This theory has rich interconnections with a variety of mathematical disciplines such as invariant theory, convex geometry, harmonic maps, and orthogonal multiplications. In this book, the author traces the development of the study of spherical minimal immersions over the past 30 plus years, including Takahashi's 1966 proof regarding the existence of isometric minimal immersions, DoCarmo and Wallach's study of the uniqueness of the standard minimal immersion in the seventies, and more recently, he examines the variety of spherical minimal immersions which have been obtained by the 'equivariant construction' as SU(2)-orbits, first used by Mashimo in 1984 and then later by DeTurck and Ziller in 1992. In trying to make this monograph accessible not just to research mathematicians but mathematics graduate students as well, the author included sizeable pieces of material from upper level undergraduate courses, additional graduate level topics such as Felix Klein's classic treatise of the icosahedron, and a valuable selection of exercises at the end of each chapter.