Search preferences
Direkt zu den wichtigsten Suchergebnissen

Suchfilter

Produktart

  • Alle Product Types 
  • Bücher (3)
  • Magazine & Zeitschriften (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Comics (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Noten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Kunst, Grafik & Poster (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Fotografien (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Karten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Manuskripte & Papierantiquitäten (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)

Zustand Mehr dazu

  • Neu (3)
  • Wie Neu, Sehr Gut oder Gut Bis Sehr Gut (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Gut oder Befriedigend (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Ausreichend oder Schlecht (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Wie beschrieben (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)

Weitere Eigenschaften

  • Erstausgabe (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Signiert (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Schutzumschlag (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)
  • Angebotsfoto (2)

Sprache (1)

Preis

Benutzerdefinierte Preisspanne (EUR)

Gratisversand

  • Kostenloser Versand nach USA (Keine weiteren Ergebnisse entsprechen dieser Verfeinerung)

Land des Verkäufers

  • Robert Koo

    Verlag: Creative Media Partners, LLC Mai 2025, 2025

    ISBN 10: 1025123506 ISBN 13: 9781025123509

    Sprache: Englisch

    Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 43,52

    EUR 61,86 für den Versand von Deutschland nach USA

    Anzahl: 2 verfügbar

    In den Warenkorb

    Buch. Zustand: Neu. Neuware - Hyperspectral imagery (HSI) analysis is frequently employed by the Department of Defense for the purpose of classifying objects within an image as a form of target detection. In this research a robust Two-Phase Filtering Independent Component Analysis (ICA) Target Detection Method is proposed and validated. This new method resolves two main challenges encountered when implementing target detection methods using ICA, a high order statistics feature extraction (FE) method. The first challenge is the high computational demand imposed by the large volume of data associated with HSI during the FE process. To alleviate the effort required for ICA data processing, principal component analysis (PCA), a classical second order statistics method, is used for data reduction. Furthermore, the performance of using PCA under classification is compared against recently developed supervised FE techniques. The second challenge arises during the feature selection (FS) phase after the statistically independent components have been extracted. Current ICA target FS techniques have shown to be either unreliable or require significant user-intervention. A reliable FS process is essential in automating the target detection process. This proposed method uses ICA to extract independent features from the retained principal components, and is followed by an unsupervised target FS with a two-phase filtering process using kurtosis and mean silhouette values. This method achieved promising results when tested against a wide range of benchmark images.

  • Koo, Robert

    Verlag: BIBLIOSCHOLAR, 2012

    ISBN 10: 1288319401 ISBN 13: 9781288319404

    Sprache: Englisch

    Anbieter: moluna, Greven, Deutschland

    Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 61,74

    EUR 48,99 für den Versand von Deutschland nach USA

    Anzahl: Mehr als 20 verfügbar

    In den Warenkorb

    Zustand: New. KlappentextrnrnHyperspectral imagery (HSI) analysis is frequently employed by the Department of Defense for the purpose of classifying objects within an image as a form of target detection. In this research a robust Two-Phase Filtering Independe.

  • Robert Koo

    Verlag: Creative Media Partners, LLC Nov 2012, 2012

    ISBN 10: 1288319401 ISBN 13: 9781288319404

    Sprache: Englisch

    Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

    Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

    Verkäufer kontaktieren

    EUR 75,90

    EUR 61,32 für den Versand von Deutschland nach USA

    Anzahl: 2 verfügbar

    In den Warenkorb

    Taschenbuch. Zustand: Neu. Neuware - Hyperspectral imagery (HSI) analysis is frequently employed by the Department of Defense for the purpose of classifying objects within an image as a form of target detection. In this research a robust Two-Phase Filtering Independent Component Analysis (ICA) Target Detection Method is proposed and validated. This new method resolves two main challenges encountered when implementing target detection methods using ICA, a high order statistics feature extraction (FE) method. The first challenge is the high computational demand imposed by the large volume of data associated with HSI during the FE process. To alleviate the effort required for ICA data processing, principal component analysis (PCA), a classical second order statistics method, is used for data reduction. Furthermore, the performance of using PCA under classification is compared against recently developed supervised FE techniques. The second challenge arises during the feature selection (FS) phase after the statistically independent components have been extracted. Current ICA target FS techniques have shown to be either unreliable or require significant user-intervention. A reliable FS process is essential in automating the target detection process. This proposed method uses ICA to extract independent features from the retained principal components, and is followed by an unsupervised target FS with a two-phase filtering process using kurtosis and mean silhouette values. This method achieved promising results when tested against a wide range of benchmark images.