Verlag: LAP LAMBERT Academic Publishing, 2021
ISBN 10: 6203925381 ISBN 13: 9786203925388
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 29,02
Währung umrechnenAnzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New.
Verlag: LAP LAMBERT Academic Publishing Jun 2021, 2021
ISBN 10: 6203925381 ISBN 13: 9786203925388
Sprache: Englisch
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
EUR 32,90
Währung umrechnenAnzahl: 2 verfügbar
In den WarenkorbTaschenbuch. Zustand: Neu. Neuware -The main aim of the text is to give a review of fast kernel expansions, FOURIER features and rapid numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in datasets with a large number of samples. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. The manuscript contains interesting applications to Computer Vision (CV) and Deep Learning (DL) which can serve as guideline for novel researchers in the topic. In particular we provide a primer on facial recognition and directives for the use of large-scale techniques of Vision in Robotics.Books on Demand GmbH, Überseering 33, 22297 Hamburg 88 pp. Englisch.