Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 91,35
Anzahl: 1 verfügbar
In den WarenkorbZustand: New. pp. 146 37 Illus.
Sprache: Englisch
Verlag: Springer Berlin Heidelberg, 2005
ISBN 10: 3642066712 ISBN 13: 9783642066719
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 148,18
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 140 pages. 9.25x6.00x0.32 inches. In Stock.
Sprache: Englisch
Verlag: Springer Berlin Heidelberg, 2005
ISBN 10: 3540284591 ISBN 13: 9783540284598
Anbieter: moluna, Greven, Deutschland
EUR 118,64
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. Advances our understanding of the linkage learning genetic algorithm and demonstrates potential research directionsGenetic algorithms (GAs) are powerful search techniques based on principles of evolution and widely applied to solve problems in.
Sprache: Englisch
Verlag: Springer Berlin Heidelberg, 2010
ISBN 10: 3642066712 ISBN 13: 9783642066719
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Genetic algorithms (GAs) are powerful search techniques based on principles of evolution and widely applied to solve problems in many disciplines. However, most GAs employed in practice nowadays are unable to learn genetic linkage and suffer from the linkage problem. The linkage learning genetic algorithm (LLGA) was proposed to tackle the linkage problem with several specially designed mechanisms. While the LLGA performs much better on badly scaled problems than simple GAs, it does not work well on uniformly scaled problems as other competent GAs. Therefore, we need to understand why it is so and need to know how to design a better LLGA or whether there are certain limits of such a linkage learning process. This book aims to gain better understanding of the LLGA in theory and to improve the LLGA's performance in practice. It starts with a survey of the existing genetic linkage learning techniques and describes the steps and approaches taken to tackle the research topics, including using promoters, developing the convergence time model, and adopting subchromosomes.