Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich
EUR 46,63
Anzahl: 1 verfügbar
In den WarenkorbZustand: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,550grams, ISBN:3540570438.
Verlag: Springer, Berlin, Heidelberg, et al, 1995
ISBN 10: 3540570438 ISBN 13: 9783540570431
Sprache: Englisch
Anbieter: Munster & Company LLC, ABAA/ILAB, Corvallis, OR, USA
Hardcover. Zustand: Poor. Zustand des Schutzumschlags: Near Fine. Berlin, Heidelberg, et al: Springer, 1995. 235 pp. 24 x 16 cm. Yellow paper covered boards with dark blue titling to cover and spine. Faint rubbing to boards, with bumping to corners and ends of spine. Interior clean and unmarked. Binding firm. Appears unused. Hard Cover. Poor/Near Fine.
Anbieter: Fireside Bookshop, Stroud, GLOS, Vereinigtes Königreich
Verbandsmitglied: PBFA
EUR 46,63
Anzahl: 1 verfügbar
In den WarenkorbCloth. Zustand: Very Good. Type: Book Small plain label inside cover.
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Verlag: Springer Berlin Heidelberg, 1995
ISBN 10: 3540570438 ISBN 13: 9783540570431
Sprache: Englisch
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Gut. Zustand: Gut | Sprache: Englisch | Produktart: Bücher.
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Dynamical Systems IX | Dynamical Systems with Hyperbolic Behaviour | D. V. Anosov | Taschenbuch | viii | Englisch | 2010 | Springer | EAN 9783642081682 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Verlag: Springer Berlin Heidelberg, 2010
ISBN 10: 3642081681 ISBN 13: 9783642081682
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This volume is devoted to the 'hyperbolic theory' of dynamical systems (DS), that is, the theory of smooth DS's with hyperbolic behaviour of the tra jectories (generally speaking, not the individual trajectories, but trajectories filling out more or less 'significant' subsets in the phase space. Hyperbolicity the property that under a small displacement of any of a trajectory consists in point of it to one side of the trajectory, the change with time of the relative positions of the original and displaced points resulting from the action of the DS is reminiscent of the mot ion next to a saddle. If there are 'sufficiently many' such trajectories and the phase space is compact, then although they 'tend to diverge from one another' as it were, they 'have nowhere to go' and their behaviour acquires a complicated intricate character. (In the physical literature one often talks about 'chaos' in such situations. ) This type of be haviour would appear to be the opposite of the more customary and simple type of behaviour characterized by its own kind of stability and regularity of the motions (these words are for the moment not being used as a strict ter 1 minology but rather as descriptive informal terms). The ergodic properties of DS's with hyperbolic behaviour of trajectories (Bunimovich et al. 1985) have already been considered in Volume 2 of this series. In this volume we therefore consider mainly the properties of a topological character (see below 2 for further details).
Verlag: Springer Berlin Heidelberg, 1995
ISBN 10: 3540570438 ISBN 13: 9783540570431
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This volume is devoted to the 'hyperbolic theory' of dynamical systems (DS), that is, the theory of smooth DS's with hyperbolic behaviour of the tra jectories (generally speaking, not the individual trajectories, but trajectories filling out more or less 'significant' subsets in the phase space. Hyperbolicity the property that under a small displacement of any of a trajectory consists in point of it to one side of the trajectory, the change with time of the relative positions of the original and displaced points resulting from the action of the DS is reminiscent of the mot ion next to a saddle. If there are 'sufficiently many' such trajectories and the phase space is compact, then although they 'tend to diverge from one another' as it were, they 'have nowhere to go' and their behaviour acquires a complicated intricate character. (In the physical literature one often talks about 'chaos' in such situations. ) This type of be haviour would appear to be the opposite of the more customary and simple type of behaviour characterized by its own kind of stability and regularity of the motions (these words are for the moment not being used as a strict ter 1 minology but rather as descriptive informal terms). The ergodic properties of DS's with hyperbolic behaviour of trajectories (Bunimovich et al. 1985) have already been considered in Volume 2 of this series. In this volume we therefore consider mainly the properties of a topological character (see below 2 for further details).