Verlag: Cambridge University Press, 2023
ISBN 10: 1009389432 ISBN 13: 9781009389433
Sprache: Englisch
Anbieter: Better World Books: West, Reno, NV, USA
Zustand: Good. Used book that is in clean, average condition without any missing pages.
EUR 44,96
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 574 pages. 9.92x7.95x1.02 inches. In Stock.
EUR 49,46
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 574 pages. 9.92x7.95x1.02 inches. In Stock.
Verlag: Cambridge University Press, 2023
ISBN 10: 1009389432 ISBN 13: 9781009389433
Sprache: Englisch
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 63,89
Anzahl: 1 verfügbar
In den WarenkorbZustand: New.
Verlag: Cambridge University Press, 2024
ISBN 10: 1009389432 ISBN 13: 9781009389433
Sprache: Englisch
Anbieter: moluna, Greven, Deutschland
EUR 42,52
Anzahl: Mehr als 20 verfügbar
In den WarenkorbZustand: New. An approachable text combining the depth and quality of a textbook with the interactive multi-framework code of a hands-on tutorial.Deep learning has revolutionized pattern recognition, introducing tools that power a wide range of technologies in such d.
Verlag: Cambridge University Press, 2024
ISBN 10: 1009389432 ISBN 13: 9781009389433
Sprache: Englisch
Anbieter: Buchpark, Maidenhead, Berkshire, Vereinigtes Königreich
EUR 18,09
Anzahl: 1 verfügbar
In den WarenkorbZustand: Fine. Condition: Fine | Language: English | Product Type: Books.
Verlag: Cambridge University Press Dez 2023, 2023
ISBN 10: 1009389432 ISBN 13: 9781009389433
Sprache: Englisch
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Deep learning has revolutionized pattern recognition, introducing tools that power a wide range of technologies in such diverse fields as computer vision, natural language processing, and automatic speech recognition. Applying deep learning requires you to simultaneously understand how to cast a problem, the basic mathematics of modeling, the algorithms for fitting your models to data, and the engineering techniques to implement it all. This book is a comprehensive resource that makes deep learning approachable, while still providing sufficient technical depth to enable engineers, scientists, and students to use deep learning in their own work. No previous background in machine learning or deep learning is required-every concept is explained from scratch and the appendix provides a refresher on the mathematics needed. Runnable code is featured throughout, allowing you to develop your own intuition by putting key ideas into practice.