Sprache: Englisch
Verlag: Packt Publishing, Limited, 2022
ISBN 10: 1803242388 ISBN 13: 9781803242385
Anbieter: Better World Books, Mishawaka, IN, USA
Zustand: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects.
Sprache: Englisch
Verlag: LAP LAMBERT Academic Publishing, 2020
ISBN 10: 620056843X ISBN 13: 9786200568434
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 85,29
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 152 pages. 8.66x5.91x0.35 inches. In Stock.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 145,95
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 196 pages. 9.21x6.14x0.42 inches. In Stock.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
EUR 164,69
Anzahl: 3 verfügbar
In den WarenkorbZustand: New.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 167,44
Anzahl: 2 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 250 pages. 9.25x7.50x9.22 inches. In Stock.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
EUR 232,91
Anzahl: 1 verfügbar
In den WarenkorbPaperback. Zustand: Brand New. 250 pages. 9.25x7.50x9.22 inches. In Stock.
Sprache: Englisch
Verlag: Elsevier Science Feb 2025, 2025
ISBN 10: 0443328188 ISBN 13: 9780443328183
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Dimensionality Reduction in Machine Learning covers both the mathematical and programming sides of dimension reduction algorithms, comparing them in various aspects. Part One provides an introduction to Machine Learning and the Data Life Cycle, with chapters covering the basic concepts of Machine Learning, essential mathematics for Machine Learning, and the methods and concepts of Feature Selection. Part Two covers Linear Methods for Dimension Reduction, with chapters on Principal Component Analysis and Linear Discriminant Analysis. Part Three covers Non-Linear Methods for Dimension Reduction, with chapters on Linear Local Embedding, Multi-dimensional Scaling, and t-distributed Stochastic Neighbor Embedding.Finally, Part Four covers Deep Learning Methods for Dimension Reduction, with chapters on Feature Extraction and Deep Learning, Autoencoders, and Dimensionality reduction in deep learning through group actions. With this stepwise structure and the applied code examples, readers become able to apply dimension reduction algorithms to different types of data, including tabular, text, and image data.